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RESUME

Dans ce travail, nous considérons un nouveau modele
pour le probléme des contours actifs basé sur une équation
aux dérivées partielles. Nous additionnons & ’équation de
la courbure moyenne un terme qui représente une force con-
stante dans la direction de la normale sur les ensembles de
niveau et une fonction pour arréter ’ensemble de niveau
Notre
modele est intrinséque, stable (il satisfait le principe du

considéré sur le contour qu’on désire reproduire.

maximum) et permet une analyse mathématique rigoureuse.
De plus, nous pouvons déduire des algorithmes robustes
et sans paramétres pour les applications. Nous présentons
des expériences numeériques et des applications sur images
médicales.

1. INTRODUCTION AND MAIN RESULTS

One of the problems in image processing is the edge
detection problem which is the problem of finding lines sep-

arating homogeneous regions. An edge must have two prop- -

erties: to be smooth or piecewise smooth and the gradient
of the image should be large along the edge. The classical
snake method starts with an initial contour Cy called ac-
tive contour” or ”snake” near some contour 7y in the image
and one looks for admissible deformations of Cy which let
it move towards the desired contour ~p. These deforma-
tions are obtained by trying to minimize an energy func-
tional designed in such a way that the set of local minima
constitutes the searched image features. The original idea
was due to Kass-Witkin-Terzopoulos [8], Blake-Zisserman
[2] and further improvement of this model was successively
done by Terzopoulos [13], Cohen [4], Cohen-Cohen [5] and
many other contributions.

The energy functional always consists in the sum of two
terms:
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The internal energy E;,; serves to impose a smoothness
constraint. Representing the position of the snake paramet-
rically by v(s) = (z(s),%(s)), s € [0,1], we can write the
internal energy as:

1
Eing = / (@GP + B P (1)
0

According to the above mentioned authors, parameters
a > 0 and 8 > 0 impose the elasticity and rigidity coeffi-

. clents of the curve.

The external energy E..: depends on the features which
are searched for in the image and is defined as:

1
Bt = -\ /0 v @) (2)

where yu is the gradient of the image intensity and A > 0.

Then, in the snake method, the moving curve tries to
minimize the global energy Ein:+ Fext- But the snake model
has theoretical difficulties due to the fact that it is not an
intrinsec model: the parametrization of the curves does not
permit to get the geometrical regularity of the contours.
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In our work (see [3]), we propose a different model based
on the mean curvature motion equation

Ou _ o V(u)
BT—W(“)'dw(w(u)l) (t,z) € [0,00[xR% (3)

which describes the motion of the level sets {x € R?% :
u(z,t) = k} of the function v, , & € R, which evolve fol-
lowing the normal direction with speed depending on the
mean curvature. In fact we add to (3) a term represent-
ing a constant force in the direction of the normal to the
level sets and then multiply it by a function g(z) to stop
the followed level set there where we want to reproduce the
desired contour. Thus our model is

_8_11_: T w)(div v(w) v T co[xR2
57 = @I @il ) +0) (6.2) € [0.00leR® (4

u(0,2) = up(z) =« € N? where g(z) = m‘v—cla—*gij, vis
a positive real constant, G, * gg is the convolution of the
image go where we are locking for the contour of an object
O with the Gaussian G,(z) = Col/? exp(;—f) and ug is
the initial data which is taken as a smoothed version of the
function 1 — x¢, where x¢ is the characteristic function of
a set C containing O.

The geometrical interpretation of our model is the fol-
lowing:

1) The term div(%), which is teh curvature of the
level set passing by z, ensures that the grey level at a point
in 8C increases proportionally to the algebraic curvature of
0C at this point. This term is responsible for the regular-
izing effect of the model and plays the role of the energy
term, Ej,, in the snake model. The constant v is a cor-
rection term chosen so that div(]—‘v%(%%r) + v remains always
positive.

2) The term | 57 (u)| controls what happens at the in-
terior and exterior of C.

3) The term g(z) controls the speed at which dC moves.
When OC is near the boundary of the object O, | 7 G, *
go| is big and AC stops. We convolved the image go to
eliminate the effect of noise in our model. This coefficient
is the point where the image comes in our model. Thus
the energy criterium used to pusch the snake towards the
desired contour in the snakes model has been replaced by a
slowing down criterium represented by the coefficient g(z)
in our model.

We note that, as in the classical snakes, our model also
gives an accurate localization of the edges and is able to
extract smooth shapes. Moreover, it can provide several
contours at no additional computational expense time and
permits a theoretical analysis and proof of the correctness of
the method. We remark that the evolution of the level set

curves does not depend on its particular parametrization,
while the snake model does.

Geometric equations like (4) have recently been studied
in [6],{7], (12]. In particular, a related model of anisotropic
diffusion with application to images was studied in [1]. All
these equations satisfy a maximum principle and the basic
mathematical tools employed are the theory of viscosity so-
lutions for second order degenerate elliptic equations (see
6))-

If C denotes the level curve of u, an analogous model
is given by

oC

- = Cys = curv(C(s))7i(s)

where s is the euclidian parameter and curv(C(s)) is the
curvature of C' at s. We remark that the theory of plane
curve evolution has recently been introduced into computer
vision by Kimia et al [9], [10] and [11] in order to regard the
curve as the boundary of a planar domain which deforms in
time. Our main theoretical result is:

Theorem. Let ug,vo € C(R) N WH(R). Then

1) The equation (4) admits a unique viscosity solution
u € C([0,00xR?) N L=(0,T; Who(R?)) for all T < co.
Moreover, it satisfies

infreug < u(z,t) < supgeug

2) Let v € C([0, c0[xR?) the viscosity solution of (4) with
initial data vg. Then for all T" € [0, 0o we have

supoge<r || u(t, 2)—v(z,t) || Loy <|| wo(2) —vo(z) || Lo (m2)

where W1*°(R?) denotes the space of bounded Lipschitz
functions on R2.

This result means in practice that the method will always
work in completely reliable way : if 0 < up < 255, then u(t)
is defined in the same interval for every time.

2. NUMERICAL SCHEME AND EXPERIMET
TAL RESULTS

In order to discretize the degenerate diffusion operator
A (u)l(div(%) + v), the nurmerical scheme is based on
the one used by Alvarez-Lions-Morel in their work [1]. Thus,
we only mention the general idea that was explained in more
detail in their paper. First of all, the image is sampled on
a grid. Of course, the discretizations of the differential op-
erators at a point (¢, j) of the grid, for obvious fastness and
simplicity reasons must involve a few points around it. Typi-
cally, one would consider four other points for the discretiza-
tion of the Laplacian, namely (i£1, 7) and (4, 7£1). Now, in
our case, the differential operator can hardly be represented
by two directions. Denote by £ = —zsinn + y cosn, where



(cosm,sinn) = 1%—“-[, the coordinate in the diffusion direc-
tion (which is orthogonal to the gradient). The anisotropic
term of the equation is therefore %25’; and can easily be dis-
cretized only if in the direction (—sin#, cosn) one can find
points of the grid near (i, 7). Anyway, we are led to a new
formulation of the equation, which will take into account
the discrete number of diffusion directions.

Let 0 € m < 7 < ... € 7, < w the n angles and
Z1, ..., Tn the coordinates defined by x; = —z sin n;+y cos ;.
In other terms, z; is the coordinate orthogonal to the direc-
tion given by the angle 7;. We shall decompose the variable
diffusion operator
%y .o (Ou? . *u 2 0%
FE = (sin n)a—x2 — 2(sinn cos n)m + (cos 7));9?
into a linear nonnegative combination of the fixed direc-

6u

tional diffusion operators % 52t

Consider the operator

Vu 3'u,
A“‘ZfJ v aa

where the f; > 0 are designed to be active” only 1f is
close to n;. Then in order to discretize the degenerate dxf—
fusion operator |y (u)]dzv(ﬁ%—,) we use the approximated
operator defined before. The functions f; define a ” partition
of unity”. If the directions are given by 7; = (n — 1)x/2N,
i =1,..,2N, then define an even smooth function f with
support in {—n/2N, w/2N] verifying f(n /2N —n)+f(n) =
Finally, the functions f; are defined by f;(n) = f(n — 7;),
where for simplicity the boundary points of the interval [0, 7]
are defined.

After this aproximation, the algorithm follows and we
obtain with this discretization a linear system in u*+! which
can be solved by any iterative method and for which supju**1|
< supju®| (see [1] for more details).

The experimental results have been made on WorkSta-
tion SUN IPC, with a image processing environment called
MEGAWAVE, whose author is Jacques Froment.

The parameters a priori necessary for the method are:

1) The value of the parameter v, which represents the
weight of the constant force in the direction of the normal
to the level sets.

2) The choice of the level set which we want to follow
through the motion. Depending on this choice, we find the
edge of an object in different iterations and as a consequence
of that, in different times.

3) The stopping time of the evolution. This parameter
is automatic becausse we naturally impose a control coef-
ficient constructed in the following form: If 4, is the curve

which represents the evolution of the initial curve given by
the operator, we compute each iteration the function

E(1) = —— [ |9 Gy # g0(a(s),y(s))lds
A

L (’Yt o7

where L(7) is the length of 7, and we wait until E(7y;)
decreases below a certain level, say 1/2E(~y), Then, we take
as an optimal stopping time the time at which the function
E(«;) attains its maximum. This represents the time of
best fitting between the envolving curve v, and the searched
contour.

Some comments on the image

"Iechographie” is a medical image. In this image, one can
see from left to right and from top to bottom the initial
contour and the results of successive iterations.
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