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RESUME

On considére le problem de I’élimination du bruit de fond
et de signaux acoustiques. On a montré que la tache de la
détéction/alignement /restitution peut étre formulée comme
un problem de filtrage non linéaire et résolu par ’'usage de la
théorie du filtre de Kalman extensif. Les tests numériques
éxécutés pour les signaux acoustique réels confus par des
perturbations réels et produits artificiellment confirment
trés bonnes proprietés de P’algorithme proposé et suggérent,
entre autres, éntre utile pour la restitution de vieux disques
& gramophone.

1 Introduction

Even though the three operations comprising the task
of adaptive restoration, namely : signal filtering/recon-
struction, process identification and outlier detection were
treated separately by many authors [1] - [6] no unified ap-
proach combining all three elements was presented so far.

Due to the lack of consistent theoretical analysis all restora-
tion packages developed so far (see e.g. [7]) are basically
”tool-boxes” consisting of a number of algorithms designed
for different purposes and combined in a more or less me-
chanical way. Obviously, the subtle interplay which ties to-

gether different aspects of adaptive restoration is in this case

ignored.

The method described in this paper overcomes the above-
mentioned limitations and seems to be the first system-
atic treatment of the general restoration problem (combined
background noise and outlier elimination in a time-varying
environment). It is shown that the task of simultaneous
detection/tracking/restoration can be stated as a nonlinear
filtering problem and solved using the theory of extended
Kalman filter (EKF).

The proposed algorithm can be viewed as a combination
of two Kalman filters. coupled in a nonlinear fashion. The
first filter is designed to track slow parameter variations (a
standard random walk model of of parameter changes is
adopted) and the second one is used for the purpose of on-
line recovering of the regression vector (made up of past
signal measurements). The outlier detector is based on mo-
nitoring of prediction errors and its decisions are carried out
by means of the proper covariance assignment. At each time
instant the decision treshold of the detector is determined

in accordance with some accuracy measures updated by the
EKF algorithm. '
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The problem of elimination of background noise and im-
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shown that the task of simultaneous detection/tracking/res-
toration can be stated as a nonlinear filtering problem and
solved using the theory of extended Kalman filter. Numeri-
cal tests carried out for real audio signals corrupted with
both real and artificially generated disturbances confirm
very good properties of the proposed algorithm and suggest,
among others, its usefullness for the purpose of restoration
of old gramophone recordings.

2 The proposed algorithm

2.1 Adaptive filtering

Consider the problem of filtering of the discrete time signal
s(t),t =1,2,... based on the measurements corrupted with
the white background noise v(t)

y(t) = s(t) + v(t) (1)

Suppose that the signal s(¢) can be modelled as an autore-
gressive (AR) process of order p

st+1) = Zai(t)S(t —i+1)+e(t) (2)

driven by white noise sequence {e(t)}. Assume that both
noise processes are independent and Gaussian

o(t) ~ N(0,02
e(t) ~ N(0,02)
o(t) L e(t)

Finally, suppose that unknown process parameters a(),.. .,
ap(t) are subject to slow variation and that their evolution
can be locally described by the following random walk model

a;(t+ 1) = a;(t) + wi(t) (3)

i1=1,...,p

where {w(t)}, w(t) = [w1(t), ..., wp(t)]T is the white Gaus-
sian noise sequence, independent of {e(¢)} and {v(¢)}

. w(t) ~ N(0,021)
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We note that the diagonal form of the adopted covariance
matrix of {w(t)} implies that signal parameters vary inde-
pendently of each other which is a pretty standard simpli-
fying assumption - see [2] for further details. Note also that
the quantity o2 can be interpreted as the mean square rate
of parameter variation.

We will show that under the assumptions made the problem
of recovering of the signal s(t) based on the set of noisy
measurements Y (t) = {y(¢),...,y(1)} can be staled as a
nonlinear filtering problem in the state space and solved
using the theory of extended Kalman filter (EKF). Actually,
introducing the notation

ai(t) s(t) é
=] : | em=| e=| .
(1) st=p+1) :
and
ar(t) - apa(t)  ap(t)

] 0 0

Aty = Al] = | _ '

0 ... 1 0

equations (1) - (3) can be rewritten in the form

A(t)p(t) + ce(t)
ot + 1) a(t) + w(t) (4)
y(t) cT(t) + v(t)

or, using a more compact notation, in the form

p(t+1)

z(t+1) = flz()]+w(t) (5)
y(t) = cge(t)+o(t)
where
_ ¢ _ e(t) e
=50 | co=[59] «=5]
and

sl = [ A9 9 Je0

Since f[-] is a nonlinear function (note that A(t) depends
on 6(t) and hence on z(t)) equations (5) comprise a non-
linear filtering problem which can be solved using the EKT
approach. Denote by F(t) the state transition matrix of the
linearized system

2T (el
Ft) = Ve flz],pup = A(;“) (; K

~

where A(t|t) = A[f(¢[t)] and

- (15

is the filtered state trajectory yielded by the EKF algorithrn.
Let

Q = covfw(t)]/o? = [ ch 0 } =2 (1)

Then equations of the extended Kalman filter for the system
governed by (5) take the form (cf. [1])

ey = | A0 ?Jam>
Bl) = F(tft—1)+ L))
() = olt) - G- 1)

I

yt) =0Tt — 1)t - 1)p(t— 1t = 1)  (8)
T _ S(tlt—1)co
L(t) cg’i(t|t—1)cu+no

Sl = (I - L)t - 1)

|

S+ 1)) FOSEOFT(t) + Q
where
o2
Kg = }—:2-

and the matrices £(¢]t) and £(t + 1[t) stand for approzimate
normalized (with respect to the input noise variance 0?) a
posteriori and @ priori covariance matrices of the estimation
error

covlz(t)|Y (1) o2E(tl)

cov[z(t + 1)|Y (1)) = o25(t + 1)t) ©)

The algorithm (8) can be viewed as a combination of two
Kalman filters coupled in a nonlinear fashion. The first filter
is designed to remove the measurement noise and the sec-
ond one is used for the purpose of parameter tracking. The
tracking sub-filter uses the estimate of the regression vector
©(t) yielded by the signal restoration sub-filter. Similarly,
the restoration sub-filter relies on current estimates of pro-
cess coeflicients §(t) worked out by the tracking sub-filter.
The scalar measurement noise variance to driving noise vari-
ance ratio kg > 0 and parameter change variance to driv-
ing noise variance ratio £, 1 > £ > 0, are two important
user-dependent ”knobs”. Vaguely speaking, the value of
the noise-to-signal ratio g decides upon the degree of sig-
nal smoothing introduced by the EKF algorithm (if g is set
to zero the input signal remains unmodified). The quantity
& controlls the "effective memory” of the parameter tracking
part of the algorithm and should be chosen in accordance
with the rate of nonstationarity of the identified process [6]
(if process coefficients are time-invariant & should be zero -
otherwise it should be set to a small positive number).

2.2 Outlier detection/elimination

A simple outlier detector can be built using the ”3-sigma”
rule frequently utilized in statistics. Observe that

(tle-1) = Ely()ly (t= 1) = B[l (t=1)] = T (1l -1)
and hence
e(t) = y(t) = G(tlt — 1) = ¢f ((t) — 2(t]t = 1)) + v(1)

leading to (cf.(9))

ple(t)) = N(0, o%(1)) (10)
where , )
ci(t) = n(tt - 1)o?

ntlt—1) = ISt — e + o (11)



A reasonable ” consistency test” based on (10) becomes
le(t)] < 30¢(t) (noise impulse absent)
le(t)] > 3o¢(t) (noise impulse present)

w-{0
(12)

According to (12) the sample is classified as an outlier if the
magnititude of the corresponding prediction error exceeds
three times its standard deviation.

Denote by T, (t[t), S,e(t]t) = > H(tt) and So(t|t) the px p
blocks of the a posteriori covariance matrix £(t|t) associated
with Z(¢[t)

e | St Speltt)
Ht = [ Surltl) Soltl) ]

Note that since

n(tlt — 1) = S (]t ~ 1)eo + Ko
=5T(t—1)t— 1)29(t — 1t = 1)@t -1t~ 1)
HOT (= 1t~ DE, (¢ — 1]t - 1At~ 1jt - 1)
207 (¢ — 1|t — D)Epp(t — 1|t — D@t — 1|t — 1) + ko + 1

both parameter and data uncertainties are taken into ac-
count when determining the decision treshold in (12).

Only minor changes are needed to adjust the EKF filter (8)
so that it could cope with outliers. Actually, consider replac-
ing the constant variance ratio k¢ in (8) with the following
time-varying one

0={ % i @ 09

Quite obviously, by putting x(f) = oo in (8) one indicates
that the corresponding measurement is corrupted with noise
of “infinite variance” (02(t) = co) and hence that it bears no
information about the recovered signal. Note that «(t) = oo
entails

Ity = 0
() = F(tlt-1) (14)
Tt = E@t-1)

with the effect that the data point y(¢) - even though avail-
able - is ignored by the estimation routine.

Remark

Knowledge of the variance of the driving noise {e(¢)} may
be essential in order to tune the EKF algorithm properly.
First, the value of 02 is needed to establish the noise-to-
signal ratio kg in (8). Second, and more importantly, it acts
as a scaling factor in the expression for the variance of the
prediction error (c.f. (11)) and may hence strongly influence
efficiency of the outlier detector (12).

Since the variance of the driving noise is related to the power
of the signal s(t) it would be pretty naive to assume that a
single ”global” estimate of o2 can be found suitable for all
time instants ¢. In the absence of outliers the following ”lo-
cal” exponentially weighted maximum likelihood estimator
of 02 can be used (cf. Bohlin [2])

HORE (15)

where

(1)

_ - i €(0) — \p(t —
0 = LA T D

=1

k() = i/\‘“i:/\k(t—l)+1 (16)

i=1

and A, 0 < A < 1 is the so-called forgetting constant deter-
mining the ”effective mémory” of the estimator.

Replacing (16) with »(t) = =(t — 1) and k(t) = k(t — 1)
whenever d(t) = 1 one obtains a simple estimation algo-
rithin which can be used to track slow variations in o2 in

the presence of outliers.

2.3 Smoothing/reconstruction

The optimal, in the mean square sense, estimate of s(r)
given the data set Y (¢) takes the well-known form [1]

s(r[t) = E[s(7)[Y (1)]

If t > 7 the quantity §(7|t) is called the smoothed estimate
of s(7) as it combines at instant 7 not only all ”past” mea-
surements but also a certain number of ”future” ones (of
course this is possible if a decision delay of ¢ — 7 sampling
periods is introduced).

It is straightforward to note that the Kalman filter (5) can
serve as a fixed lag smoother. Actually, we have

Bls(t)lY (1) st

p(t]t) = : = :
Els(t —p+ 1)]Y(2)] s(t—p+1§t)

and hence the last variable comprising the estimated regres-
sion vector at instant ¢ can be used as a smoothed estimate
of the signal at instant ¢ —p + 1.
Since the mean square error E[(s(r) — 5(7|t))?] is a nonin-
creasing function of the smoothing lag ¢ — 7 (it is strictly
decreasing if ¢Z > 0) one may be interested in obtain-
ing a smoother with a lag ¢ greater than p — 1. We
note that this task can be easily accomplished by taking
o(t) =[s(t),s(t =1),...,s(t~p),s(t—p—1),...,s(t — 9)]%,
g > p and redefining the variables A(t) and ¢ in (4) appro-
priately.
Finally, we note that in the case where d(t}) = 1, i,
where the sample is called in question by the outlier de-
tection routine, the quantity s(t|t + ¢)= E[s(t)|Y (t + ¢)]=
Pg+1(t + q|t + ¢) can be regarded as the best (in the mean
square sense) reconsiruction of s(t) based on the data avail-
able at instant ¢ + ¢.

3 Experimental results

Results of two numerical tests carried out for real audio
signals show how the proposed algorithm works in practice.
In the first experiment a segment of a noiseless J.S. Bach
recording (baroque orchestra with harpsichord - ¢.f. Fig.1a)
was corrupted with three kinds of artificially generated dis-
turbances : white Gaussian noise (Fig.1b), positive noise
pulses of a constant magnitude (Fig.1d) and a mixture of im-
pulsive and background noise (Fig.1f). The results yielded
by the EKF algorithm, shown in figures lc, le and lg,
respectively, are quite impressive. In particular, all noise
pulses were correctly identified as outliers and replaced with
reconstructed samples. :
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Fig.1 A segment of a noiseless audio signal (a) and its cor-
rupted versions obtained by adding white background noise
(b), noise pulses (d) and a mixture of impulsive and back-
ground noise (f). The results yiclded by the EKF algorithm
are shown in figures (c), (e) and (g), respectively.

In the second experiment a noisy segment of Ch. Gounod’s
song ” Ave Maria” (symphonic orchestra - c.f. Fig.2a) played
back from an old 78-r/min recording was analysed. The
proposed method seems to have dealt favourably with all
kinds of disturbances present in the recording such as back-
ground noise, ”cliks” (noise pulses), *flats” (distortions in-
troduced by the digital amplifier) and ”scratches” (large ar-
tifacts caused by the local groove damage) - see Fig.2b.

In both experiments signals were sampled at the rate of
24kHz using the 16 bit A/D converter. The adopted order
of autoregression was p = 8 and the memory-controlling
parameter £ was set to 0.00001.

1281 1536 1792

Fig.2 A segment of a noisy audio signal from an old 78-r/min
phonograph record (a) and its restored version (b). Arrows
mark the most significant disturbances such as ”cliks” ,

?flats” | f| and ”scratches” )
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