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RESUME

Cet article présente une analyse temporelle du
comportement du poids de l'algorithme LMS quand
le signal d'entrée est une sinusoide déterministe. La
récursion matricielle lineaire variable en fonction du
temps peut €tre résolue exactement en utilisant une
décomposition en sous-espaces orthogonaux. Nous
montrons que le comportement en régime transitoire
et permanent et la stabilité de 'algorithme dépendent
des valeurs propres de la matrice d'état pour la
récursion induite invariante dans le temps. La
réponse du signal utile a la sortie du filtre est décrite
par une systéme lineaire invariant dans les temps.
Ainsi cet article présente un autre dérivation des
résultats donnés dans [1] and étend les résultats de
[4] au cas d'un filtre adaptatif N-tap.

1. INTRODUCTION

The LMS adaptive filter algorithm is usually
comprised of a tapped delay line with uniform tap
spacing, a set of adjustable weights which multiply
the tap outputs and a summer [2]. The weights are
adjusted recursively based upon the difference
between the output of the summer and an external
desired signal. When the algorithm input is
deterministic, the behavior of the algorithm is often
quite different than when the input is a stochastic
process [1,3].

These cases are denoted Non-Wiener solutions to
the algorithm. This behavior was studied for adaptive
noise cancelling when the reference input was a
deterministic sine wave [1] and for a noise corrupted
sine wave reference when the desired signal is either
a sine wave or white noise in [3]. The analysis in
[1] was based upon the assumption that there existed
‘a time-invariant transfer function between the
algorithm error and the adaptive filter output
(although the adaptive filter weights are time-varying
even in steady-state). This allowed the authors to
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ABSTRACT

This paper presents a time domain analysis of the
weight behavior of the LMS algorithm when the
reference input is a deterministic sinusoid. The time-
varying linear matrix recursion for the LMS weight
vector is solved exactly using an orthogonal
subspace decomposition. The transient and steady-
state behavior and the stability of the algorithm are
shown to depend upon the eigenvalues of the state
transition matrix for a related time-invariant
recursion. The response from the desired signal to
the filter output is described by a linear-time-invariant
system. Thus, this paper presents an alternative
derivation of the results given in [1] and extends the
results in [4] to the N-tap adaptive filter case.

apply Z wransforms to the adaptive loop and to find
an equivalent steady-state transfer function. [3]
studied the case when the reference was a
deterministic sine wave in white noise. [4] studied
the noise-less problem for a two tap filter using a
state-space approach and obtained an exact closed
form solution. The solution was based upon finding
a time-invariant state equation for the two tap
weights. This work leads to a simple understanding
of non-Wiener type adaptation but is not applicable to
adaptive filters with more than two taps.

This paper studies the same problem as in [1] but
uses a time-domain analysis of the adaptive filter
behavior to obtain results. Transient and steady-state
solutions are presented for the weights. In contrast
to [1], where loop time-invariant system arguments
were used, an orthogonal decomposition approach
yields results in a direct manner. This alternate
approach yields transient, steady-state and stability
results for the weight vector. This work also extends
the results in [4] to an arbitrary number of tag
weights.
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2. PRELIMINARIES
A. LMS Algorithm
The reference input to the tapped delay line is
denoted x(n). X(n) denotes the vector of tap input
values as x(n) moves down the delay line.
XT(n) = [ x(n), x(n-1), x(n-2), ..., x(@-N+1)] (1)
N denotes the number of taps. The N-
dimensional tap weight vector W(n) is defined as
WT(n) = [wi(n), wa(n), w3(n),..... wN(m)] (2)
W(n) is adjusted recursively according to [2]
W(n+1) = W(n) + i e(n) X(n) 3)
where e(n) =d(n)-WT(n)X() . @)
d(n) is an external desired signal and

N
WT)Xm) =Y win)x(n—i+1)
i=1 . 5)
B. Algorithm Inputs
The reference input is a deterministic sinusoid whose
period is an integer sub-multiple of the length of the
tapped delay line. This constraint leads to significant
analytical simplification and corresponds to setting
the time-varying terms to zero in [1-eq. (8)]. Thus,

xm)=(1/2)[ exp(in MN) + exp(-jt M/N) | (6)
where M is an integer, 0 < M <N. x(n) has power
1/2.  The vector X(n) can be written as
X(n) = (1/2) [ exp(jr M/N) d + exp(-jx Mn/N)d*](7)
where dT = {1,exp(-jnM/N),exp(-j2rM/N),......
exp(-jn(N-1)M/N)}. Note that d and d* are
orthogonal vectors. For the steady-state part of the
analysis, the desired waveform is

d(n) = (1/2){ exp(jnnQ/N) + exp (-jrnQ/N) } (8)
where 0 < Q < N, Q not necessarily an integer. In the
transient part of the analysis, d(n) is an impulse
applied at an arbitrary time.

3. ANALYSIS
A. Weight Vector Solution
Inserting egs. (4) and (7) in eq. (3) yields

Wh+1) = [I —%Q(n)}W(n) +ud(n)X(n)
9
where ®
eI 2ZM/NggT | g+ gT
Q(n) =

The orthonormal eigenvectors of the time-varying

operator S(n) =1- (u/4) Q(n) are
¢1(n)=[exp{jaMn/N}d+exp{jnMn/N}d*]/(2N)1/2

$2(n) =[exp{jnMn/N }d-CXP{-jWI(VII{I)/N }Jd*)/ (-:2N)12

and any set of N-2 orthonormal vectors which are
also orthogonal to ¢1(n), ¢p2(n). The first eigenvalue
is A1=(1-uN/2) and the remaining N-1 eigenvalues
are all unity. The input in eq. (9), X(n), projects

only onto ¢1(n) and the recursion update S(n)
projects only onto the subspace spanned by ¢1(n)
and ¢2(n). Thus, when W(0)=0, W(n) also must lie
in that subspace. Therefore, the complete solution to

eq. (9) is a linear combination of the first two
eigenvectors, .
W(n) = [k;(n) + ko (n)] de™M/N

+[ky(n) — ko (n)] d"e~IMA/N (12)

Inserting €q.(12) in (9) and using the orthogonality
condition on the eigenvectors, one obtains a pair of
coupled recursions in k1(n) and ka(n),

[kl(n+ D+ k2(n+1)] =1 — UN [ 2]k, (m)e"™I¥
(e 0 4 £ d(me
[k (n+1)— ky (n+ D] = [1— N / 2k, (m)e?™ !

= ky(me™™ + £ d(mer

(13)
Adding and subtracting both equations and dividing
by two yields
ki(n+1) =[1-pN/2]cos(nM / N)

~jsin(mM / Nk (n) + %cos(nM / Nyd(n)
kp(n+1) ==j[1-uN/2]sin(xM/ N)

+cos(mM / NYky (n) — j%sin(nM / Nyd(n) "

Eq. (14) can be written in matrix form as follows
K(n+1) = VK(n)+ R(n)

where KT(n) = [k1(n),ky (n)],
3 [ (1-uN/2)cos(tM / N)

~jsin(nM / N)
" | =j(1=uN/2)sin(xM / N)

cos(tM / N)

—jsin(tM / N)
(15)
The behavior of the recursion in eq. (15) depends
upon the eigenvalues of the time-invariant matrix V.
The eigenvalues of V are given by '

[1-uN/2]cos(nM/N)~y —jsin(xM/N)
—j[1-uN/2]sin(xM /N)  cos(mM / N) -y

Y =(1-puN/4)cos(xM / N)

2
i\/(gg—) cos’(nM / N) - (1 - %)sinz(nM /N)
(16)

R(n) = %—[eﬁmQ/ N, e‘J'TmQ/N]‘: cos(mM / N) }




The transient behavior of the recursion in eq. (15)
depends upon the magnitude of the eigenvalues. The
smaller is the magnitude, the faster is the transient
response. The fastest response occurs for the
critically damped case. For small pN, the
eigenvalues are complex conjugates lying near the

unit circle in the complex plane at (1-uN/4) ™",
As N increases, the eigenvalues follow an arc of a
circle until meeting on the real axis, splitting and
eventually crossing the unit circle when uN =4
(instability).

Since V is time-invariant, the solution to eq. (15)
can be easily written as

n-1
K(n)= V'K(@0)+ Y, V""" "R(m)

m=0 (17)
It should be noted that this recursion is similar to the
recursion in [4-eq. (13)] for the N=2 case.
However, eq. (17) applies to the two dimensional
sub-space for an N-tap filter. Furthermore, eq. (17)
is applicable for TM/N phase shift between taps
rather than for only /2 as for the model in [4].

For finite n, the summation can be expressed in
terms of the eigenvalues of V using the similarity
transformation V =Q I' Q-1 T is the diagonal
matrix of eigenvalues given in eq. (16) and Q is the
matrix of the eigenvectors of V. Note that V is not
Hermitian and thus the eigenvectors of Q are not
orthogonal, in general. Thus, eq. (17) becomes

n-1
K(n) = Qr"Q'K(0)+Q Y,I" ™ 7'Q"'R(m)

m=0 (18)
Without loss, assume zero initial conditions,
K (0)=0. Eq. (18) combined with eq. (12) is the
complete and general solution to eq. (9). The sums
in eq. (18) can be evaluated in closed form for large
n without knowledge of Q.

B. Steady-State Behavior from d(n) to
the Filter OQutput
Assuming Iyl < 1, i=1, 2, the sum in eq. an
converges as n approaches infinity (steady-state),
yielding

n-1
limy_ye K(n) = %limn_)w 3 yemlx
m=0

[emmQN e—jan/m][ cos(xM/N) ]
—jsin(xM / N) (19)

n-1 .
Now limg_,,, ¥,V M le/m/N
m=0

_ jmnQ/N[,jnQ/Ny _ y ]!
N[N - V] 20)

Thus,

QN[ I/ V]—l
lim,_y.. K(n) =~ ) X
+e_j7mQ/N [e-an/NI _ V]—

~E

cos(tM / N)
—jsin(xM / N)
(21)

Now, the matrix inverses in eq. (21) are easily
evaluated, yielding

mQ/N -

K(n) = Hie cos(mtM /'NQ)/Nl %
4| —jsin(nM / N)e/®
JMQ/N

2N _ (3 E})cos(nM / Nyel™ N 41— PZE

m [e‘j"Q/ N cos(mM / N) — 1} o

4| —jsin(aM / N)e /N
(- ImQ/N

o127 _ p - PN o / Ny IPUN 4 1 - 9?-
L

(22)
Using eq. (12) and (22), the filter output is given by
WT(m)X(n) = Nk; (n) =
—u%[ej"Q/ N cos(mM / N) - 1]cj7mQ/ N
2N _ (2 - %\l)cos(nM / NyeI™ /N

“EN T
2

%\l[e_j"Q/ N cos(aM / N) — 1]e"j""Q/ N

e 12PN _(3— B—})cos(nM I Nye I N 41 —%‘1

(23)
Thus, the steady-state filter output consists of the
same frequencies as contained in d(n). Hence, in
steady-state, there is a linear time-invariant
relationship between the sinusoidal input d(n) and the
filter output. Hence, a frequency response function
from d(n) to the filter output is

Pzﬁ[zcos(nM /N)-1]

I(z)=

2~ 2= cosaM / Nyz +1- B2

2 2 (24)
Eq. (24) agrees precisely with the transfer function
result in [1-eq. (17)] for a desired sinusoid power of
1/2 (C=1in [2]).
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C. Transient Behavior from d(n) to the
Filter Output

The time-varying behavior of eq. (17) would
suggest that the system with input d(n) and output
WT(n)X(n) would undergo a time-varying behavior
as the adaptive filter converges to the dynamic
solution given by eq. (22). To investigate this
behavior, consider the impulse response from input
d(n) to output WT(n)X(n). Replacing the sinusoidal
input d(n) by an unit impulse applied at time p, (d(n)
= 8(n-p))

n-1
Km)=£ Y v ™ I5m—p)
2
m=0
_ EVH—P—I[ c.o.s(nM/N)
2 —jsin(tM / N)

= () otherwise

cos(tM / N)
—jsin(aM / N)

}forOSpSn—-l

(25)
Eq. (25) is the vector impulse response. Since
K(n) is a discrete vector sequence, consider its Z
transform

b v —non-p-1l €os(tM/N)
Z[K(n]== A4
[K]=3 ngﬂz [—jsin(nM/N)

_ -g-z_p[zl _ V]_I[ cos(tM / N) :l

—jsin(tM / N)
(26)
Following the same procedure as from egs. (19)-
(24), the Z transform of the filter output is given by

Z[WT(n)X(n] -

%[zcos(nM /N)-1]z"P

=z PJ(z)
22 —(2—%\1-)cos(nM/N)z+l—%
27)
Since the Z transform of the impulse input is zP,
it follows that the impulse response from d(n) to
WT(n)X(n) is time-invariant. It is obvious that the
system is linear. Hence, the steady-state transfer
function derived in (24) for a sinusoidal input and the
transfer function obtained by taking the Z transform
of the impulse response impulse are identical. Note
also that the denominator polynomial in eq. (27) is
the characteristic polynomial in eq.(16) for the
eigenvalues of V.

D. Stability

The stability of the algorithm depends on the
magnitude of the eigenvalues in eq. (16). If uN is
sufficiently small, the eigenvalues are complex, and

lv[ =1-un/2 (28)
If uN is such that the eigenvalues are real, then the

larger eigenvalue is given by
Y1 =(1—=uN/4)cos(rM/N) +

_ (1=pN/2)Tan*(aM/N)
(UN/ 4)

%\—ICOS(RM / N)Jl
(29)

For fixed M/N, Y] is monotone increasing with g
and equal to one when UN = 4. Hence, the algorithm
is stable for 0 <pN <4,

4. RESULTS AND CONCLUSIONS

This paper has studied the behavior of the LMS
algorithm when the reference input is a deterministic
sinusoid and the desired input is a either a sinusoid
or an impulse. Using time domain methods, the
transient weight vector solution is obtained for
arbitrary adaptation speeds.

It was shown that there exists a time-invariant
transfer function between the desired input and the
filter output that depends on the eigenvalues of a
time-invariant matrix.

The model presented here can also be used to
analyze the additive noise case [3] with fewer
approximations and will be the subject of a
subsequent paper.
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