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RESUME

Dans cet article, nous proposons un algorithme d'allocation
optimale des débits binaires qui prend en compte les
caractéristiques de la chaine de compression. Cet algorithme
est basé sur la minimisation d'un critére non convexe. En effet,
lintroduction de certaines contraintes, telle qu'une contrainte de
positivité, peuvent rendre le critére non-convexe et empécher
l'algorithme d’allocation de converger.

Pour résoudre ce probléme, nous proposons d'utiliser la
méthode des Lagrangiens généralisés. Nous sommes alors
amenés a introduire une fonction de pénalité dans le critére,
qui assure l'existence d'un point col et la convergence de
Palgorithme. Le probléme de minimisation peut alors étre résoiu
par l'utilisation d'une méthode classique de min max a 'aide du
gradient conjugué.

I. Introduction

Today, in digitized satellite image domain, the needs of high
dimension images increase considerably. Then, the feasibility of
the missions depends on the trade-off : transmitted image
quality and transmission bit rates.

Thus, in most of the cases, an image coding process is

performed on board, while the decoding algorithm is processed.

on earth. The coding algorithm must be adapted to the spatial
mission. It depends on the input signal and the post-processing
performed on the decoded image.

The input signal is described physically and statistically, and the
knowledge of the optical instruments permits to construct a
theoretical model of the imaging system or Modulation
Transfert Function (MTF) of the imaging system.
Furthermore, post-processings like Digital Terrain Model
(DTM) are important in planetary missions, for the future
satellites, or for piloting Automatic Planetary Rover (VAP).

In this paper, we propose a new optimal bit allocation algorithm
associated to a data compression method, in order to reduce the
bit rate for transmission or storage while maintaining an
acceptable fidelity or image quality. A lot of research was
recently done in this field [Brad 92, Rama 93]. However, the bit
allocation method we propose here is based on the minimization
of a non-convex criterion, and we give solutions to solve the
convergence problems for this algorithm.

ABSTRACT

This paper develops a new optimal bit allocation algorithm in
order to have an efficient transmission of vector sources over a
digital noiseless channel. This method takes into account the
caracteristics of the compression scheme. This algorithm is
based on the minimization of a non-convex criterion. In fact, the
introduction of constraints, such as positivity constraint, could
provide a non-convex criterion. Then, the optimization method
may be caught in local minima.

To solve this problem, we propose to use the augmented
Lagrangian method. Here, we introduce a penalty function
which ensures the existence of a saddle-point and the
convergence of the aigorithim. Then, the minimization problem
can be solved using a classical conjugate gradient method.

The proposed method can be combined with a multiresolution
analysis structure like the wavelet transform, and can perform
on every kind of signals (1-Dimensional, 2-Dimensional ...).
The compression process is based on lattice vector quantization
(for more information see {Anto 92, Barl 92]).

1. Quantization

II.1. Quantizer Distortion Approximation

For a large codebook (large number L of quantization symbols)
and reproduction vector size n, Zador showed that the distortion
D(R) of a vector quantizer is given by [Zado 82] :
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where R is the bit rate in bits per sample (see paragraph I1.2)
and the values of A(n,2) were tabulated by Conway and Sloane
[Conw 85] for a uniform joint probability density function (pdf).

Making the asumption that X is an independent
multidimensional variable, we can write
(2+n)
D(R) < A(n,2)27%R “m pr(y)" (2+")dy] )
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where py(y) is a monodimensional pdf.

1I.2. Entropy

For the purposes of transmission or storage, a binary word ¢;, of
length b; bits and called the index of the reproduction vector, is
assigned to each output vector Y;. Thus, vector quantization can
also be seen as a combination of two functions : an encoder,
which views the input vector X and generates the index of the
reproduction vector specified by Q(X), and a decoder, which
uses this index to generate the reproduction vector Y;. Let us
define

by =~log, p(Y;)

where p(Y;) is the probability of selecting the reproduction
vector Y; during the encoding. Thus, the average binary word
length, for a codebook Y is given by the formula

L
H(Y)==) p(¥;)log, p(Y;) bits/vector 3)

i=1

the so-called entropy measure of the codebook, which specifies
the minimum bit rate necessary to achieve a distortion D(R)
with the chosen quantizer. Hence, the practical average rate R in
bits/sample, achievable with an entropy code (like Huffman or
arithmetic code), is bounded by [Gers 92]

lH(Y)SRslH(Y)+l
n n n

ill. Bit Allocation Procedure
lil.1. Problem

Let us define DT(RT) the total distortion of a quantizer where
Ry is the total bit rate we want to achieve. Then, in a
multiresolution scheme, we have the two following equations :

Dr(Rp) =Y 4 Di(R;)
i

and RT = Zai Ri
i

where a; are weighting resolution parameters which depend on
the multiresolution scheme we use (see paragraph IV). These
parameters exist, because the implementation of the wavelet
transform is not isometric (see [Mall 89, Anto 92, Daub 88]).
For example, in the classical dyadic case, a,-=1/225.

Each distortion Di(R;) of each sub-image (sub-signal) is defined
like the distortion D(R) given in paragraph IL.1, formula (2). The
R; correspond to the practical average bit rates allocated to each
sub-image (sub-signal).

lll.2. Classical Method

A classical method of optimization consists in minimizing the
following functionnal using Lagrangian multipliers

Jo(Ri )= D;(RT)+A{Za,- R, —RT}

i

where A is a Lagrangian multiplier, and the weighted distortion
is given by D*T(RT) = Za[ Di(Ri) B;.
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The assignment of the values B, is based on the MTF of the
imaging system and the post-processing applied on the
quantized signal (see paragraph IV.2. for image coding
application).
The solution obtained here is analytical and is given by
[Anto 92]. Furthermore, a problem remains in the values of R;

which could be negative.

l11.3. Optimization with a Positivity Constraint

In order to avoid negative values, we introduce in the criterion a
positivity constraint (Cf. formula (4)) such that the bit allocation
problem is formulated as

Min Dy(Ry)
Ri
subjectto Ry = Zai R; 4)
i
and  0SR; < Ry,

where R, . can be chosen as the maximum entropy of the sub-

images or sub-signals. Then, the functionnal J(R, L) becomes

J(Ri,A)=Jo(R:, A)+
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i

max:
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2
> ] is the constraint R;SR
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The choice for the value of (i, i.e. the positivity constraint in the
functionnal, could provide a non-convex criterion. This is a
typical ill-posed problem and the classical min max
optimization methods may be caught in local minima.

i1l.4. A New Bit Allocation Scheme

However, a solution is given in [Rock 74, Flet 87 Chap.12] by
the augmented Lagrangian method. Then, we must minimize
the functionnal given formula (5).

Here, we introduce a penalty function which ensures the
existence of a saddle-point and the convergence of the
algorithm, even for large values of . In fact, the trade-off
between (L and r permits to keep a convex criterion.

These values of | and r are chosen by experiments according to
the global bit rate R we want to obtain (see paragraph V).
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where ':Z a;R; - RT] is the penalty function.
i

Then, the minimization problem can be solved using a

conjugate gradient method, and a solution is given by [Mino 83]

Mi JIR A
ochin  Max [J(R.4)]

Note that other kind of augmented Lagrangian, based on the
. same idea (combination of the classical Lagrangian and penalty
functions) were proposcd in the littcrature ([Naka 75] lor
example).

IV. Application to a Muitiresolution
Image Coding Scheme

IV.1. Principie

Multiresolution was recently introduced by [Meye 90, Mall 89]
and extensively used by many researchers in image coding
application [Mall 89, Anto 92]. The aim of the paper is not to
present the theory of the wavelet transform, so the interested
reader shall refer to [Meye 90, Daub 88].

Multiresolution exploits the eye’s masking effects and therefore,
enables us to refine the bit allocation according to the resolution
level. Although a flat noise shape minimizes the MSE criterion,
it is not generally optimal for subjective quality of images. To
apply noise shaping across the sub-images, we define a total
weighted MSE distortion Dr(Ry). The weights B; included in
this distortion measure are chosen according to the post-
processing as described in paragraph IV.2.

The orthonormal property of the wavelet decomposition ensures
an additive contribution of the quantization error (MSE) across
the scales and directions. The normalization we choose for the
wavelet coefficients and the low frequency coefficients
introduces an increase of the distortion in power of 4 in the
dyadic case [Mall 89] and in power of 2 in the quincunx case
[Barl 92] (this is due to a non-isometric implementation of the
wavelet transform). For example, in the dyadic case the
parameters a; are equal to 1/2%/, so that the total distortion and
the global bit rate can be written :

I
* 1 1
DT(RT)=——221 Dflc(Rfic) Bff +Z—‘22,- Di(R;) B;
i=1

I
b 1
and RT_WRI +27Ri
i=l

T

where I stands for the lowest resolution (dc components) and
D R}’C) for the distortion of the lowest resolution with bit
allocation R§<.

For the computation of each theoretical distortion Dy(R;) we
assume that the wavelet coefficient sub-images have Laplacian

pdfs py(x).

IV.2. Choice for the Weighting Factors Bj

In general, the problem of finding an optimal bit allocation is
formulated so as to minimize a distortion measure between the
original image and the quantized image. However, the choice of
the distortion measure is often motivated by a numerical
evaluation of the quality of the quantized image (like Peak
Signal to Noise Ratio or Peak SNR) and not necessarily by its
subjective quality for example.

In this section, we propose a strategy to take into account both
the post-processing applied on the quantized image
(visualization, correlation...) and the Modulation Transfert
Function (MTF) of the imaging system (see Figure 2). These
quantities are introduced in the weighting factors B, (see Figure
).

In fact, we assume that each MTF is of the type H(fx,fy) in the
Fourier domain. Thus, we can write the weight B; in the Fourier
domain as a product of the considered MTFs since it
corresponds to a convolution product in the spatial domain :

Bi =HH’”(fxi’f}’i)

For the X axis, the weighting function we use is plotted on
Figure 1. It corresponds to the product, in the frequency
domain, of the imaging system's MTF (low pass filter) and a
correlation MTF (high pass filter). For the Y axis, the function is
slightly the same. Here, the maximum size of the correlation
window is taken equal to 9X9 pixels, and the frequency f¢/2
corresponds to 0.5 on figure 1.
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Figure 1 : Weighting function in the Fourier domain.
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Figure 2 : Imaging system MTF, and post-processing model introduced in the optimization process.

V. Experimental results

The images we usc for the experimental results are stereo pairs
of 1024x1024 pixels satcllitc images, coded on 8 bits/pixel

(8 bpp). These images, provided by the National Institute of

Geography of France (IGN), are simulated images of Mars for
the MARS 94 project. For this kind of images, the
characteristics of the imaging system (MTF) and the post-
processing (DTM) are perfectly determined.

A stereo pair is compressed with a compression ratio of about
20:1, which corresponds to 0.4 bpp. Here, two bit allocation
schemes arc used. The first corresponds to a bit allocation
minimizing the usual MSE and the second, to a bit allocation
using the weighting function given on Figure 1. In order to
construct DTM, the disparity is computed on the coded/decoded
stereo pair, using a correlation window of size 5x5 pixels. The
results are compared to those obtained with the original stereo
pair coded on 8 bpp. The results show that the total mean
squared error of the disparity estimation decreases, when using
a bit allocation procedure with weighting factors (see Table 1).
This means that the quality of the DTM is beiter in the weighted
case.

Disparity MSE X axis Y axis
Bj (of Fig.1) 30.86 29.46
Bi=1 33.71 30.96

Table 1 : MSE of the disparity estimation.
VL. Conclusion

The results we obtain are promising. In fact, we have construct
an algorithm which permits to take into account both the MTF
of the imaging system, the MTF of the correlation system, and
all other MTF according to the post-processing we want to
apply on the coded image.

We have introduced a positivity constraint and a maximal
bound on the bit rate. Furthermore, using augmented
Lagrangian operators, i.e. penalty function, this algorithm
converge systematically towards an optimal solution. In fact,
this method permits to solve the problem of non-convex criteria,
encountered when introducing non linear constraints such as
positivity constraint.
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