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RESUME

Dans cet article, nous présentons un modele du filtrage
spatio-temporel qui a lieu dans le systeéme visuel périphérique
des vertébrés (systeme optique ct rétine). Nous montrons qu'une
implémentation efficace de ce traitement peut &tre réalisée sur
une architecture numérique classique. Ce filtrage inspiré de la
perception visuelle chez les vertébrés permet un traitement tem-
porel analogique, la perception des contours et des couleurs ainsi
que celle du mouvement. En outre, I'implémentation VLSI de
cet algorithme est quasiment immédiate.,

1. Introduction

In this paper, we are interested in the very early stages of
the biological vision in order to understand these mechanisms
and to integrate them into the paradigm of smart visual sensor.
Figure 1 shows a cross-section of the vertebrate eye. Before
striking the retina, the continuous spatiotemporal image must
pass through the crystalline lens which produces an non-homo-
geneous spatial filtering. Afterwards this resulting image strikes
the retinal surface which is spatially sampled in a non-uniform
way with four various photoreceptors in a chromatic respect.
Finally, the luminous signal is converted into an electric signal
which is altered by the neural filtering of the retina while keep-
ing continuous in time and discrete in space.
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Fig 1. Overview of the Model

The neural structure of the retina can be modelled with
some very simple electric components and thus, the underlying
filtering can be easily analysed in a signal processing viewpoint
with the Fourier and 7. transforms (see section 2). Moreover, we
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In this paper, we present a model of the spatiotemporal
filtering that occurs in the peripheral visual system of verte-
brates (optical and retinal systems). We show that an efficient
implementation can be worked out on a conventional computer
architecture. This biology-inspired perceptive filtering allows: a
temporal analog processing, a colour and edge perception as
well as a motion perception. Moreover, the VLSI implementa-
tion can be realised in a straightforward way.

propose a recursive implementation of the optical and neural
piocessing that occurs in the vertebrate eye, which leads to
powerful simulation tool, that is simple and efficient [Beaudot
and al. 1993]. In the third section, we show how the underlying
filtering of the retinal model can be used to detect motion.

2. The Biology-Inspired Model

Fig 2. Synaptic transmission between the neurons of the first
functional layer. C: cones, H: horizontal cells, B: bipolar cells.
The inset shows the flow diagram of signal in the synaptic triad.

2.1 Towards a Mathematical Model

Figure 2 is an enlargement of the neural circuitry in the
first functional layer of the retina (more exactly the Outer
Plexiform Layer or OPL) which is well-known from a neuro-
physiological point of view [Dowling 1987]. Three types of
neurons interact: the photoreceptor (C) transmits, after the
transduction, the signal to the neighbouring photoreceptors (a
first lateral diffusion) and to the two other types of neurons -
horizontal-cells (H) and bipolar-cells (B) - in an antagonistic
way. An horizontal-cell transmits its signal to its neighbours
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too (a second lateral diffusion) and to a bipolar-cell. Then the
bipolar-cell receives two opposite signals which induce a spa-
. tiotemporal inhibition, if the temporal neural integration is tak-
en into account.

In order to describe the functional properties of such a
natural system, we need to design a model. We propose an elec-
tronic model (Figure 3) which is an extension of the Mead’s
model [Mead and Mahowald 1988]. In this model - analog in
time and discrete in space - each lateral diffusion can be consid-
ered as a resistive network with a leaky integrator at each node
to model the temporal properties of the neurons, Each lateral re-
sistance models the electrical synapses (bidirectional transmis-
sion) between the same type of neurons and each vertical resis-
tance models a chemical synapse or a unidirectional transmis-
sion, The differential amplifier is for the opposed effect of two
synaptic transmissions onto the same neuron (here a bipolar-
cell).

H-Cell
Layer

Bipolar
Cells
Fig 3. 1-D electronic model of the first functional layer.

s(k)

We can apply the Kirchhoff’s current law at each node of
this circuit to obtain the differential equation of the dynamics of
the model. Then, the relation between the input x(k,t) and the
output y(k,t) of each resistive node is written:

Ak, ) +a - [y(k-Lo)+y(k+1, 0] —1- y(k t)
1+2- o

y(k, t) =

This circuit is composed of two resistive grids whose transfer
function F(zx,zy,ft) = Y/X, using the Fourier transform for the
analog time variable and the Z-transform for the discrete space
variable, is given in the 2D case by:

1
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The space constant o, the leaky constant B and the time con-
stant T are the parameters of each resistive grid and are related to
the electrical components by: « = /R, B=r/rpand T =r.C . If
we denote F¢ and F, the transfer function of each resistive grid,
the total spatiotemporal transfer function G(zx,zy,ft) = S8/X of
the circuit (Fig. 3) is written:

Glzx,2y,f) = Fe(zx,2g.£) . [1 - Fi(zx,2y,f) 1

The analysis of this transfer function can be very useful to bring

out the functional properties of the model and hence the ones of
the retina. The study of F(zx,zy,fo can even lead to an efficient
digital implementation of the resistive grid as we will see in the
next subsection. Before going farther on, we must note the in-
separability of time and space variables in this filter. This re-
mark will have indeed a great importance for the motion pro-
cessing in the retinal model (section 3).

Fig 4. The transfer function of the model for 1D space dimension.
left down: spatial frequency, up-right: temporal frequency.

In the signal processing viewpoint, this model acts as a spatio-
temporal band-pass filter (figure 4) which induces some very
useful properties [Srinivasan and al. 1982]:

- the edge and motion enhancement,
- the reduction of the spatiotemporal redundancy,

2.2 Towards a Digital Model

Let us consider the classical numerical approximation of
the time derivative:

§(k, 0 = y&k, -y t—At)

At

The digital approximation of the dynamics of a resistive grid is
then written:
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The term u(k,t) can be computed at time t and we showed that
the 1-D transfer function Y(2)/U(z) [Beaudot 1992] can be put in
the form:
1-

Y@/Ug) = H@o)  Hax)  where  #() = 1o
and © a parameter related to o, B and 1. Thus, Y(z)/U(z) is the
convolution of a causal first order recursive filter by a anticausal
first order recursive filter. Then, in the signal domain, we obtain
the digital filtering:

y(K) = u(k) * h°(k) * h(K)
%—I
y (k)
where y'(k) =0 . y!k-1)+ (1 -0) . uk) fork=1toN

andy(k)=c.yk+D) + (1 - 0) . yi(k) fork= N down to 1

Each scanning needs only one addition and one multiplication
per pixel. Thus the algorithm is simple and much more efficient




than the use of direct and inverse FI'Ts. The extension of this
decomposition into causal and anticausal recursive filters re-
mains a good approximation in the 2D case. Figure 5 summa-
rizes the 2D algorithm for the computation of the spatiotempo-
ral processing of a resistive grid.
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Fig 5. Summary of the 2D algorithm.
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The simulation of the whole retinal processing consists simply
to use this algorithm for each resistive grid. Figure 6 shows the
results of this computation on a real images sequence which
contains a strong spatiotemporal noise component.

Fig 6. Results of the OPL retinal processing on a noisy images se-
quence: the left one is the input and the right is the output.

The pedestrians are illuminated whereas only the edges of the
static objects are enhanced. This processing would be very use-
ful for the motion detection.

3. Application to the Motion Detection
3.1 Analysis of the Motion Sensitivity in the OPL

Let us consider a retinal input composed of a moving
object with a translational velocity V = (vx,vy). We can easily
show that there is a relation between its spatiotemporal spec-
trum I(fx,fy,fp) and its spatial spectrum I(fx,fy):

I(fx.fy.f0) = lfx.fy) . S(fp+vy fx+vy.fy) 3.1
where 8 is the Dirac distribution. This expresses there exists a
plan given by:
ft+Vx.fx+Vy.fy = 0 (3.2)
which is very linked to the velocity direction of the moving ob-
ject and where all its spectrum is restricted. The result of the
OPL filtering on a spatiotemporal input is simply:

S(Ex.fy.f0) = Gfx,fy,fo) . I(fx,fy.fo) 3.3)

Let us substitute (3.1) for I(fx,fy,ft) in (3.3), then we can ex-
press the time frequency f; in G(fy,fy,fp) with the velocity and
the space frequencies according to (3.2):

S(fx,fy,f{) = G(fx,fy,'Vx.fx'Vy.fy) . I(fx,fy) . 8(ft+Vx.fx+Vy.fy)

This last expression means that the spatiotemporal filtering of
the {irst functional layer of the retina is equivalent to a purely
spatial filtering G(fx,fy,-vx.fx-vy.fy) when the input is a pattern
satisfying (3.1). Figure 7 shows the space-equivalent transfer
function of the OPL filter when the input is static: the retinal
acts as an isotropic band-pass spatial filter,

Fig 7. The 2-D transfer function of OPL for a static input.

Figure 8 shows the space-equivalent transfer function of the
OPL filter for a moving object. The spatial filtering is no lon-
ger isotropic and highlights two directions in the spatial fre-
quency domain: the medium spatial frequencies in the direction
of the motion are enhanced whereas in the perpendicular direc-
tion of the motion they are more deadened.

Fig 8. Module of the OPL transfer function for a moving input.
3.2 Analysis of the Motion Sensitivity in the IPL

The previous theoretical results and the figure 6 show
that our retinal model can be very sensitive to the moving ob-
jects but also to the static ones. But we think also that the
retina is the good place to make a motion detection. Then, what
is the suitable processing after the OPL in order to realize a mo-
tion detection ? :
We showed in [Hérault and Beaudot 1993] from the theory of
the matched filtering that this filtering must be a temporal filter
Y(fp which is the convolution of a first order time high-pass
filter with a time low-pass filter:

Y(fy) = (- j2rfe.t1) / [ A+2afi11).(1+b+j2nf.12) ]
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This temporal filter has also a space-cquivalent form when the
input is a moving pattern. Figure 9 shows the resulting transfer
function: the high spatial frequencies in the direction of motion
are always enhanced and the very low frequencies in the direction
of motion are always removed.

Fig 9. The space-equivalent transfer function
of the IPL filtering for a moving input.

The existence of a temporal high-pass filtcring in the second
functional layer of the retina ( more exactly the Inner Plexiform
Layer or IPL) was already emphasized in [Richter and Ullman
1982], but the capacity of the rctina to detect motion had never
been clearly shown before. Thus, we identify W with the IPL
processing.
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Fig 10. The space-equivalent transfer function
of OPL o IPL for a moving input.

The convolution of the OPL. filter G(ftx,fy,f) with the IPL filter
W(fy) leads to a new filter which has also a space-equivalent fil-
ter when the input is a moving pattern (figure 10). The retinal
output is then a signal containing high spatial frequencies in the

References

Beaudot W (1992) Traitement Spatio-Temporel d'Images par
Modele de la Rétine. Rapport de DEA, Laboratoire TIRF,
Grenoble, France, June 1993

Beaudot W, Palagi P, Hérault J (1993) Realistic Simulation Tool for
Early Visual Processing including Space, Time and Colour Data.
International Workshop on Artificial Neural Networks 93,
Barcelona, June 1993

Dowling JE (1987) The retina: An approachable part of the brain.
MA: Havard University Press, Cambridge

Hérault J, Beaudot W (1993) Motion Processing in the Retina:
About a Velocity Matched Filter. European Symposium on
Artificial Neural Networks 93, Brussels, April 1993

dircction of motion and low spatial frcquencies in the perpendic-
ular direction.

In order to achicve a useful motion detection, it is needed to dif-
ferentiate the bright moving objects on a dark background and
the dark moving objects on a bright background. This is an in-
trinsic problem of the motion perception which is rarely taken
into account. But it is known [Wissle and Boycott 1991] for a
long time that there exists separatc sensations (“channels”) for
the perception of darkness and lightness.in the biological visual
systems. In the retina, ON (for the lightness perception) and
OFF-pathways (for the darkness perception) are always found as
early as the bipolar level. Thus, we introduced a nonlinearity by
separating the bipolar output into positive and negative signals
and the IPL filtering was applied on each of them. Figure 11
shows the result of the motion detection on the negative part of
the OPL output (pedestrians are darker than the background):
static edges and spatiotemporal noise have been removed.
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of the left one: the spatiotemporal noise has been removed.

4. Conclusion
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