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RESUME

L’algorithme adaptatif de transformée en ondelettes de Mal-
var fournit une représentation spectralecompléte et non redon-
dante particulidrement adaptée pour ’znalyse, la synthése et
le compression de signaux. Cet algorithme réalise une seg-
mentation automatique du signal continu en unités quasi-
stationnaires. En traitement de parole, on obtient une segmen-
tation automatique en unités phonétiques; en outre, les centres
de masse des fréquences associées 3 chaque unité phonétique
ont été utilisés pour obtenir un algorithme de segmentation en
parties voisées et non voisées.

1 TIntroduction

Malvar wavelet transform algorithm("® consists in an arbi-
trary signal segmentation followed by a standard trigonomet-
ric transform (DCT, DST, ...) computed over preprocessed
piecest] in order to eliminate redundancy and to preserve a
complete signal description. A local spectrum representation
over an arbitrery time partition is thus obtained.

An algorithm of entropy minimization yields a best time par-
tition and an associated adapted local specirum, it performs a
signal segmentation in quasi-stationary units which appears to
be useful in automatic recognition.

In speech processing, this algorithm splits a continuous stream
into a sequence of quasi-stationary phonetic units.

In a previous paper'®, the local fundamental frequencies were

used to realize a voiced unvoiced segmentation, further exper-
iments showed that the frequencies center of mass of a voiced
part is less than one eighth of the sampling rate, this thresh-
old is used in this paper to distinguish a voiced part from an
unvoiced one.

This paper is organized as follows : the Malvar wavelet trans-
form algorithm is described in section 2 for any segmentation;
in section 3 an entropy minimization algorithm allows us to
select a signal segmentation and an associated adapted local
spectrum; analysis, synthesis and compression is described in
section 4; finally, the automatic segmentation of a speech con-
tinuous stream into phonetic units and into wvoiced/unvoiced
parts is briefly described in section 5.

2 Malvar wavelet transform

Let us consider a real signal f(t) € L*(R), we shall compute
the local spectrum associated to a Malvar wavelet transform
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over an arbitrary time-partition :
R= 1
I€Z

with I; = [a;, aj41[, this local spectrum can be obtained via
a standard fast trigonometric transform. We start with an
arbitrary segmentation which is going to be preprocessed using
a smooth rising cutoff function b,(t) satisfying

b;(t)? +b;(2a; — t): =1

bi(t) = 0 ift<a;—r (1)
T ift>ai+r

with 7 > 0 such that a; + r < ag;;; —rfor0< j < N. If

sin £(1+sin(5t)) if —1<t<1
bt)=4¢ 0 ift < -1
1 ift>1
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with b;(¢) € C(¢) and b;(2a; —t) = b;(t). The cutoff function
is used to define the so-called folding operato:m

bi(£)f(t) + b;(2a; — ) f(2a; — t) if ¢ > a;
U6 = { bj(2a; — ) f(t) — b;(t) f(2a; — f) ift< a; (2)

and its adjoint unfolding operator :

bi(£)f(t) — bj(2a; — t)f(2a; —t) if t > a;
Ui = { b;(2a; - ) f () + 0;(t) f(2a; —t) Ht<q;

which satisfies
UiU; =007 =1 (4)

over [a; — rya; + 7]

Observe that the folding operator splits f(¢) into
{ fO(t), fl(t)) B3} f:i(t)a L) fN(t)} where

U, f(t)
fi) = { &Y
Uj+1f(t)

Let us define ¢, (t) = xz,(¢)g;x(t) ( x1;(t) is equal to 1 if
t € I; and 0 otherwise) and

if t €lay,a; + 7]
it €fa; + 1041 — r] (5)
if t S [a,-+1 -~ T aj_H]

()= _[2_

Since the system {¢;1(t) : k£ € N} forms an orthonormal basis
for the set of functions L?(a;,a;4+1) with polarities (+,—) at
(aj, @j41), then

fi) = 3 cindin(®)

kEN

Had we chosen the other three pairs of signs in the folding op-
erator definition, we would obtained three other trigonometric
orthonormal basis : {¢;x(t) : k€ N,j € Z}

Pix(t) = %le(t) cos Iﬁk(t — a;) if the polarities of f;(t)
are (+,+),
éix(t) = —\/A%XIJ- (t)sin l—]’—;-l(k + %)(t - a;)xz;(t) if the polari-

ties f;(t) are (—, +),

a;) if the polarities of f;(2)

$ix(t) = \/I‘I-XI,(t) sin 7~ |1 i k(t —

are (—,—),
The following sequence of coefficients
cix =< f;(t), ;x(t) >

where k£ € N, forms a local spectrum over I;.
Furthermore, if '

b;(t)
%®={1

bi+1(2a;41 — 1)

iftela; —raj+r]
ift€faj+ra41—r) (N
ifte {(Zj.H Ty Q541 + 7“]
denotes a window over [a; — 7, ¢j41 + 7] and

ik (t) = w;i(t)g;n(t) (8)

then the local spectrum over /; can be represented via 4, (¢)
Cig =< fi(t), su(t) >=< f(2), ¥u(t) > (9)

for k € N and j € Z. This result follows from the following
property :
{ ¢J',k(t) = Tﬂ/’j,k(t) (10)
cr =< f(t), Pixlt) >

where

Uj‘(/)j,k(t) ifte [a]-, a; + r]
T]“I/ijk(f) = { wj,k(t) ifte [a] + 70541 — 7‘] (11)

Uppitp(t) af t € {ajqn ~ 7 a544)

forjEZandkEN.

The set of functions {1;x(t) : £ € N,j € Z} called Malvar
Wavelets forms an orthonormal basist 2 of 12(R), thus

fO) =3 cinthin(t)

j€Z

IO = ZZ lejal®

kEN

(12)

Consequently, this signal decomposition into orthogonal
trigonometric waveforms offers a complete and non redundant
spectrum representation.

In the discrete case, the spectrum of the functions f;(¢) with
polarities (4, =) at {a;, a;+1) can be computed via the stan-
dard fast DCT-IV transform algorithm® over each 1.

This fast DCT-1V transform algorithm can be then applied to
the local spectrum over each J; to compute the functions f;.
The function f(¢) can be reconstructed from {f;(t) : j € Z}
thanks to the unfolding operator defined in (3).

3 Entropy minimization algorithm

In this part, we describe an entropy minimization algorithm!®)
in order to select a adapted local spectrum.

Let us consider

e a sampled function f over [0, 2"],

¢ a time-partition for several levels [ = 0,1, ..., mazl
02"1= | I
0<j<2
where I = [a7*, a7, and |I7*] = |aTy, ~ o] = 2V

e 2 local spectrum
F={c:0<k<2V}

computed over IT* and
e the orthonormal basis

(47 0 <k <2V}

Observe that |{] = 2™ form = 1,2,..., mazl,
0 S ] < 2lmazl—m’ 0 S i< 2Imaa:l—'m+l.



If X7 denotes the space generated by {
over I™™ then f;(t) € X" if and only if

mo0 < k< 2V

f](t) - Zc]k¢ k(t
and
Xr=Xp + X5

Consequently, X or X33~ !+ X771 can be chosen over IT" =
I m=ly .7+1 using the following entropy function :

Hw) = 2 2o (13)
fl= IP lﬂfll2

forz € 2.

The entropy minimization algorithm is described in the follow-

ing two steps :

Step 0 :

We start with the local spectrum

s§=¢5 (14)
( m =0, level | = mazl).
Step 1:
s™ = Cg'n if H(sm™h)+ H(szigh) > H(e)
’ 555 1U32]+1 otherwise.
(15)
for m = 1,2,...,mazl.

Let us consider j € [0,512] in the following example (section
4) ; since H(co) + H( ®) > H(c}) and H(c3) + H(c§) < H(c})
then s} = c} and s} = ¢jU 3. Thus the adapted local spectrum
over [0,512]is s3 = cjUc3Uc} because H(s})+ H(s1) < H(ch)-

4 Analysis/synthesis, compression

Let us consider a speech signal sampled with a rate of about
8K Hz, corresponding to the first half second of the french

sentence “des gens se sont levés dans les tribunes”. Figure 2
shows the top 5% of the adapted local spectrum
sppeat —-céUcSUcﬁUchc%Uc‘l)sUc?,,Uc(l’s... (16)

(drawn in the middle) obained via the entropy minimization
algorithm when N = 12 and mazl = 5, its associated time
partition

[0,2Y]= QUIRURURUBUIZURUL...  (17)

is drawn with vertical lines. The smallest interval IJ‘-J has been
set to 16ms (128samples).
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"LOCAL_SPECTRUM (5%)* ——
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Figure 2: speech signal compression

Figure 2 shows the original speech signal in the top part, the
reconstructed signal obtained from the top 5% of the adapted
local spectrum is drawn in its bottom part. Similar graphs are
plotted by Xiang Fang to be used in [4] and [5]. Since the local
spectrum c} over I} = [0, 256] (samples) (or Ij = [0,32] (ms)
) is given by c} , =< f3(£), $5(t) >
with /3

2

3(6) = X3 ()~ cos T+ )t
NI

and k = 0 1,...,256, then the frequencies over [0,32] are
b= IZI‘ and 0 < Fi < 55 12‘32| , consequently 0 < Fy, < 4K Hz,
because %3 256 is the sample rate.

The local spectrum over I* = [2048,4096] (samples) (I{ =
[256, 512] (ms)) is :

i ={ci,:0<k <2048}

with ¢ =< fi(t), $i(t) >

where

2
B0) = g ()~ cos 0+ 2)(¢ — 2048)
i
with k= 0,1,...,2048.
The frequencies over [2048,4096) are Fi, = %Fi and 0 < Fi <

4K Hz. The analysis, synthesis and compressilon in this exam-
ple can be summarized as follows :

Signal Analysis

Step 0: Choose the smallest interval size (= oN-mazly op

equivalently the number of levels (mazl), (|I7] = 16ms and
mazl = 5).
Step 1: Signal preprocessing at each level ({ =0,1,..., mazl)
F@) — {5, ), - RO}
using the folding operator defined in (2).
Step 2 : Compute a local spectrum at each level
{F(8), F7 (), -0 SR} — LR (), 6T (), - G ()}

using the fast DCT-IV transform.
Step 8 : Select an adapted local spectrum

spest = céchchUchc%Uc‘fsUc?,iUc?s...
using the entropy minimization algorithm (14), (15).
Signal Synthesis

Step 4 : Reconstruct the preprocessed functions over the best
time partition

mazl"—_){nyf21f3)f1af2)f],3)f14$f15, }

using the fast DCT-IV transform.
Step 5 : Reconstruct the original signal

{f(}’fzoi f:?) f127f22’ ff3’ f]‘,)47f]95" M

using the unfolding operator defined in (3).

e f)

Compression
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The reconstructed signal was obtained with the top 5% of the
spectral coeflicients inside each interval of the best fime parti-
tion, the other 95% has been cancelled :

{c;f‘k tefy = 0if [c;"kl < 55}

where
e S, =dT,

.0
e a is the integer part of |77| » 5/100,
o {d7} is the decreasing sequence obtained from {c*} via a

sort function.

5 Speech processing

The frequencies center of mass
2
_ Zrkes
=2k
2k Ck

of a voiced segment Is less than one eighth of the sampling
rate, this threshold (1 KHz our experiments) was used to get

CM(j] (18)

an automatic voiced/unvoiced segmentation.

. “SPEECH_SIGNAL" ——
1 “SEGMENTATIONY ~—

ra/ res s9s /en/s /8/ res 8/

Figure 3: voiced/unvoiced segmentation

The voiced/unvoiced segmentation of the speech signal used in
the last section is represented in Figure 3.
The adapted Malvar wavelet algorithm decompose each signal
into orthonormal trigonometric waveforms

V2 T 1
ix(t) = wj(t)—‘le cos m(k +5)(t—a) (19)

whose duration |/;| is variable. The shortest time lag can be
chosen small enough (|I?] = 16ms) in order to detecte burst of
plosive consonants!®], rapid voicing onset of vowels and voiced-
unvoiced segments. Other elementary waveforms representa-
tion can be found in [10], [11] and [12].

Due to the inertia of the vocal organs a new command may ar-
rive before the preceding target is reached, our time-frequency
representation offers a good description of this phenomenon
of coarticulation. The entropy minimization algorithm yields
a segmentation of a continuous speech stream into quasi-
stationary phonetic units (Figure 2)

1og0 (0 g2 £2 40 [0 0
fo’f2af3,f1)f2)f137f143f15’"'
with its associated local spectrum
1 (001,220 0 ;.0
coUcUcaUciUcsUcisUcy Ucis. ...

o f¢ and f? represents the phonetic units of /d/ (f5) is its
burst),

o f3, f2, f2, f% represents the phonetic units of /e/ (f{ can
be seen as the attack and f% as the decay), f% is a mixed
voiced /unvoiced unit, it corresponds also to the begining of
consonant /g/.
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