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RESUME

Les transformées d’ondelettes non orthogonales discrétes
jouent un roéle significatif dans le traitement du signal en
permettant une résolution du temps et de ’échelle plus
fine que les transformées orthogonales. Pour invertir cette
transformee, on est accoutumé 4 utilizer un développement
en série finie des ondelettes analysantes. Bien que cette ap-
proximation convienne a beaucoups de signaux, elle manque
de la précision ou exige trop d’échelles auprés des autres.
(e papier propose plusieurs algorithmes qui fournissent un
meillure inverse et les compare dans le cas des ondelettes
de Morlet. En méme temps, des questions pratiques et
théoriques sur ’inversion des transformées d’ondelettes non
orthogonales sont abordées.

IINTRODUCTION

The standard inversion procedure for discrete imple-
mentations of nonorthogonal wavelet transforms (e.g., the
Morlet wavelet transform ei™ e=#7*"/2) is & finite expan-
sion in terms of the analyzing wavelet [1]-[2]. Formally, it
is based on the theory of frames and can be thought of as -
a discretization of the corresponding continuous inversion
formula. From this point of view several approximations
are involved: the wavelet coefficients themselves, the par-
tial sum, and the use of the analyzing wavelets rather than
their duals. While a partial expansion works quite well for
many (sufficiently oscillatory) signals, it fails to achieve
good accuracy or requires an excessive number of scales
for others. Unfortunately, the analyses found in the lit-
erature focus on frame bounds rather than the quality of
of finite discrete implementations, and generally only treat
relatively broadband Morlet wavelets. Since a main advan-
tage of these wavelets over biorthogonal wavelets, which
invert exactly, is their potential for increased resolution in
scale, there is a clear need for a more careful examina-
tion of the invertibility of these transforms. This paper
provides several alternative algorithms for inversion of the
discrete wavelet transform and compares them in the case
of Morlet wavelets. In the process, both practical and the-
oretical issues for the inversion of nonorthogonal discrete
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wavelet transforms are discussed.

Before proceeding with this introduction, we briefly
describe our notation. () denotes the mother wavelet
and is assumed to satisfy the admissibility condition

Cy 2 =z, |_¢|(wﬂ|')ﬁ dw < oco. It is the generator of a

. A
family of decimated wavelets ¥;, = \/—153 1,/;(% — n) and
N _
undecimated wavelets 1}, = 715- P ’—Z,,’l)
continuous wavelet transform of a signal s(t) is given by

Win = [ s(t) in(t)dt with the undecimated version wi

The sampled

* defined analogously. Lower case letters, w; , and wi | de-

note their discrete counterpart, the discrete wavelet trans-
form (DWT). These are typically implemented by filter
banks as illustrated in Figure 1, where [s°], = s(n) is the
discrete signal, and f and g are discrete filters. One should
visualize g, = 9¥(—n) as the sampled wavelet and f as a,
somewhat arbitrary, interpolation filter [3]. For details, the
reader is referred to the literature ({1], [3]). Additional res-
olution in scale is obtained by splitting octaves into voices,
v=0,..., L—1. That i.s, one implements multiple copies
of filter banks, each having its filter g* derived from a dif-
ferent mother wavelet y~*/24(y~"t) where y = 21/L. The
number of voices L should generally satisfy L >= 1/8. -
Although voices are essential for small 3, simplicity and
space dictate that we ignore them here (cf. [3], [4])-
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FIGURE 1. One filterbank stage of the discrete wavelet transform
DWT, and of the inverse discrete wavelet transform DWT=! respec-

tively. s® is the input signal and the last stage s™ = sM .
Y g g

Suppose there are M stages (octaves) to the discrete

wavelet transform;ie, i=90,...,M — 1. Then, the DWT
maps IR into RM+!
s 2% wiii=0,... ,M—1;s"} . (1)

Under very weak regularity conditions the null space goes
to zero as M goes to co. However, in order for the trans-
formation to be nonsingular for finite M, one must include
the smoothed signal s™ in addition to the wavelet coeffi-
cients w;. This transformation is clearly linear (although
not time invariant in the decimated case) and may be rep-
resented by a matrix A. If the DWT filters f and g are
finite, the transformation is locally finite (each row is zero
except for a section of fixed length), but the matrix itself
1s infinite because the convolution acts on arbitrarily long
signals. Also, the image of the transformation is a proper
subset of RM*! 50 that a true inverse does not exist. On
the other hand, the DWT is injective so that one may “in-
vert” objects in the range space RM+1 py specifying a left
inverse satisfying PA = I. One of the most popular of
these left inverses is the pseudo-inverse

P £ (AtA) 1Al (2)
where [AT];; = in. More generally, if B is any matrix
such that BA is nonsingular then Q = (B A)~!B is also
a left inverse.

Although the pseudo-inverse is a natural choice, other
issues are involved. Often the error criterion is not a metric
on RM*! or computational complexity is an important
consideration. Another approach, more directly related to
the filterbank structure, is to invert a single stage of the
DWT, thereby inverting the entire transform (cf., Figure
1). For the undecimated DWT, it suffices to find filters f
and g such that

ff+g+g =6 3)

where [6]m = 80,m is the Kronecker delta [3].

The various points of view begin to merge if one con-
siders a more general class of filters than those satisfy-
ing (3). The usual inversion procedure for nonorthogonal
wavelets uses the expansion

s(t) ~ Z wl',n@(t) ~ Z

n,i=0,.. . M-1 n,1=0,..,.M~-1

Wz‘,nd)i,n(t)
(4)

with the dual wavelets 1,’b:¢n approximated by the wavelets
themselves [2]. The approximations involved in the tradi-
tional frame inverse may then be reinterpreted in a filter

bank perspective. The finite sum (i.e., M < o0) is equiva-
lent to ignoring sM, while the use of the wavelets instead
of their duals is tantamount to setting A'A = I in (2).

Furthermore, if we choose f and g to be fT & [f]-:
and g' respectively, then the inverse filter bank of Figure
I computes the adjoint transformation AT = DWT? [4].
Other suitable filter choices provide different left inverses
(cf. the matrix Q above). In fact, we shall adopt the ter-
minology inverse discrete wavelet transform (DWT-1) to
refer to any inverse filter bank whether or not the filters
satisfy (3).

There are, of course, tradeoffs which accompany the
various approximations. Some of the negative aspects are
(a) filters satisfying equation (3) are usually prohibitively
long (e g, Morlet wavelets), (b) these filters generally pro-
vide inverses which are not the pseudo-inverse, and (c)
although Alw is readily computed, (ATA)~ 1ATw is not.
We find, however, in the context of inverse filter banks,
that these problems may be successfully evaded. First, we
note that if a true left inverse is desired, it may be com-
puted at a moderate computational cost by iterating the

- forward and reverse filter banks (Neumann inverse).

fact, this technique seems much more effective than us-
ing long filters to achieve comparable accuracy. Secondly,
a number of good approximate inverses exist which are
sufficient for many applications without iteration. For ex-
ample, a substantial improvement over (4) is obtained, at
essentially no cost, by including s™. Also, just as the in-
clusion of voices provides redundancy creating a tighter
frame and therefore a better inverse [2], the use of undec-
imated wavelets enables us to find inverses which perform
better than (4) with considerably less computation.

How do we go about finding these inverses? One
very effective method which lends considerable insight is
to mimic the continuous case. Two such inverses shall be
considered in this paper, the double integral formula [2]

2 dadb . .
s(t) =R 5;/ — Wi v (t) (5)
and the single integral formula [5]
2 < da
0 = ke [T mwse @

YEA) =a"Y24p((t-b)/a) and Cypy equals
1=, ]1/) (w)|/|w]| dw. When the scales are output by octaves,
a takes on the values a = 2! for integer i. Thus, da/a =

where

d(lna) ~ A(iln2) = In2. In the undecimated case db =
Ab = 1. Discretizing (5) and (6) yields
2In2 ;1 _
s(t) ~ Re - ZW 5 ¥n(®) (M
and
2In2 1 -
t) ~ Re —— wet) . 8
) & Re g S m W) )
Note that the decimated version of equation (7),
s(t) = Re ¢, Win %in(t), is essentially the frame

approximation (4). .
In this paper, we shall treat four inverses: (i) the
standard frame approximation (Fr) of equation (4);



(ii) the adjoint DWT (Ad) obtained by using the filters f
and g' in the inverse filter bank DWT-!; (iii) the discrete
analogue of the double integral (DI); and (iv) the analogue
of the single integral (SI). The latter two may also be im-
plemented by utilizing appropriate filters in the DWT-1.
In addition, we shall examine the performance of these
(approximate) inverses under iteration; more specifically,
under the Neumann formula ([2], [4]):

(BA)'B = A i(I—ABA)kB . (é)

k=0

where A .and B are the DWT and DWT~! and ) is a
scalar sufficiently small to insure convergence. It is notable
that the frame approximation, lacking the DC term (see
below), is actually singular so that even with iteration low
frequency parts of the signal may be lost.

II DISCRETE INVERSES

As the notation indicates, we consider DWT! to
be the generic undecimated inverse discrete wavelet trans-
form, with different left inverses corresponding to different
filters f and §. It should be emphasized that
DWT~! o DWT = § is an approximation, and that only
for exceptional cases of the forward transform do there ex-
ist finite inverse filters which provide a true left inverse.
An explicit representation of the output of the DWT1! is
given by (cf., Figure 1)

M-1i-1 M=1
3§ = Z_: ]:[ [(fo)*] (Dig)sw’ + 1:[ [(D]f)*]s”.’

(10)
where the operator DJ inserts 2/ — 1 zeros between the
elements of the filter f. When g is complex, s corresponds
to the real part of 5, that is s & ReS. Note, also, that the
last term contains the low frequency (DC) information.

In this section, the reader should be careful to dis-
tinguish between undecimated quantities (superscript 7)
and decimated quantities (subscript i) where, for exam-
ple, [Wil, = [w']yi,. Although the algorithms DWT and
DWT™! are always undecimated, distinctions between the
various inverses are more properly made by an appeal to
the decimated case. For notational simplicity we present
our derivations using only a single voice and replacing the
constants 2In2/Cy and 21n2/Cyy by c. Space does not
permit a full exposition (cf. [4]) so that we shall only de-
rive expressions for DI. The others, SI and Ad shall merely
be presented and discussed.

Let f = §/V2and § = cg'. Abreviating the last term
of (10) by DC, we have

—

M-l

Bl = Z 7 [(Dig") » w'], + DC

1=0
=0

—

M- .
=Y %Zynwg,-n + DC

H
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1

=¢ > —=S"wi.g, + DC
iz V23

=c Wi’n’(ﬁ,"n(O) + DC (11)
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This coincides with (4) at time ¢ = 0.

Next, we extend this formula to arbitrary times ¢t = m.
Let wi(m) 2 wi(T_ps)and wi(m) 2 w;i(T_ps) be
the wavelet transforms obtained by first translating the -
signal by m points. The idea is that these transforms are
computed at (i.e., centered about) time m. In this context,
the frame approximation (4)

s;m = s(m) =

M-1 -
Reec Z Z Wi n(0)in(m) (12)

utilizes wavelet coefficients ”computed” at time 0. On the
other hand, since the undecimated tlzlnsform and its in-
verse are time invariant, $, = [T_p;s]o. Substituting

this into (11) yields

M-1
S o= [Tomslo = ¢ Z > Win(m) $14(0) + DC .
=0 n (13)

Note that (12) and (13) represent two quite different ap-
proximations; namely, (i} a wavelet expansion about the
decimated transform computed at time 0 which uses ¥ to
extrapolate the signal to time m (equation (12)), and (ii)
the decimated transform computed at time m, used in the
wavelet expansion to approximate s(m) = [T_p,s]o at the
same time as the computation (equation (13)). In addi-
tion to the DC term, we would expect (13) to be a better
approximation since it does not extrapolate.

Similarly the adjoint, which may be computed by the
DWT-! with f = f1 and g = g' [4], satisfies

M-1 201

~ 1
Sm &= ¢ Z 5—;2 sz',n(T) Yin(m—r) + DC
i=0 n r=0
(14)
For each value of r = 0,...,2" — 1, we can use (12) to

estimate s, by extrapolating from time r to time m, that
is, sm ~ Re ij’__;l 2n Win(r) ¥in(m—r). Equation (14)
Is simply an average of these extrapolations. Since the.
longer the extrapolation, the less likely we are to have a
good approximation, the quality of this result should lie
somewhere in between that of (12) and (13).

Finally, we note that substituting § = ¢§ and ¥ =
§/V2 into (10) yields an inverse analogous to the single
integration approximation (8)

M

M-1

~ c : S,

Smo= 3 =Wl S 15
i=0 2! 2M ( )

Essentially the same formula holds for decimated wavelets;
i.e., with wi replaced by w;,; however, not all octaves
are available at each time. If one omits the DC term, the
decimated version will provide very poor results, since at
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those times for which very few octaves are available up
to one-half the energy may be omitted. This explains,
perhaps, the reticence of many people to use the single
integration approximation.

The table below summarizes the three DWT™! in-
verses presented. For completeness, we have included the
normalizations for voices.

DWT-? f 7y
. l t Co vyt
Adjoint (Ad) 3 f —= (g")
7'(1

Double Integral (DI)

Single Integral (SI)

Sl Sl

IIT COMPARISON OF INVERSES

We very briefly compare the behavior of the inverses
which have been presented. The performance of these algo-
rithms is bound to be both wavelet (including bandwidth,
number of octaves and number of voices) and signal depen-
dent. Here, we restrict ourselves to Morlet wavelets acting
on an impulsive signal. To provide a visual context, we
present, in Figure 2, plots of SI, DI, and Fr. All reproduce
the impulse, but with noticeable side lobes. The large dip
at zero for the frame approximation (Fr) is due to the lack
of a DC term. The only other obvious qualitative differ-
ence is the smaller support of the single integration (SI)
formula. More may be said from an examination of the
following table:

RMS errors of iterated DWT ™! with Morlet wavelets and
impulsive signal. 8 = 0.5, 3 ocatves, L =4, A = 0.5.

NUMBER OF ITERATIONS

0 1 ) 25 50
SI 0.31 ] 0.26 | 0.12 | 0.0038 | 0.000067
Ad || 0.32 | 0.28 | 0.16 | 0.020 0.0021
DI || 0.34 | 0.31 | 0.19 | 0.033 0.0050

IFr || 0.50 | 0.46 | 0.37 | 0.28 0.27

St betam0.125 L=8

0.5 0.5

0.0 oo

Dl beta=0.125 L=8

Both without and with iteration, SI outperforms the other
algorithms. A similar behavior seems to hold for a variety
of signals and over a large range of values of § and num-
ber of voices L [4]. The lack of convergence of Fr is due
to the missing DC term; however, that term is much less
important for narrowband signals (cf. [4]).

IV CONCLUSIONS

Discrete nonorthogonal wavelet transforms play an
important role in signal processing by providing increased
resolution in time (undecimated wavelets) and scale (voices).
However, as we have seen, the standard wavelet series ex-
pansion is neither the best nor, in many situations, an
adequate inverse. To remedy this we proposed the inverse
filter bank DWT ™! as a prototype inverse discrete wavelet
transform. It provides a unifying framework under which
various (approximate) inverses correspond to one’s choice
of filters. For example, the adjoint DWTT is computed
by using the adjoints of the filters from the forward trans-
form. Under iteration it converges to the pseudo-inverse.
However, the preferred inverse seems to be SI, that is, the
DWT~! modeled after the single integration continuous
inverse. It is by far the most efficient computationally,
is generally more accurate, converges more rapidly under
iteration, and preserves the support of the wavelet trans-
form.
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FIGURE 2. DWT o DWT ™! of an impulse. The forward transform is a Morlet wavelet with § = 0.125, four octaves, and 8 voices. From

left to right the inverses {without iteration) shown are SI, DI, and FR.



