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ABSTRACT

Many measures have been proposed for estimating signal informa-
tion content and complexity on the time-frequency plane, includ-
ing moment-based measures such as the time-bandwidth product
and the Shannon and Rényi entropies. When applied to a time-
frequency representation from Cohen’s quadratic class, the Rényi
information measure conforms closely to the visually based notion
of complexity that we use when inspecting time-frequency images.
A detailed discussion reveals many of the desirable properties of
the Rényi measure for both deterministic and random signals.

1. INTRODUCTION

The term component is ubiquitous in the literature on joint time-
frequency representations (TFRs) [1]. For example, one talks of
suppression of Wigner distribution (WD) cross-components, con-
centration and resolution of anto-components, and the property
that TFRs separate signal components such as parallel chirps that

timc and frequency. Very often the gquality of a

ovetlap in both timc an cquency.
particular TFR is judged based on subjective criteria related to
the components of the signal being analyzed. Intuitively, a com-
ponent is a concentration of energy in the time-frequency plane,
but this notion is difficult to translate into a quantitative concept.
In fact, the concept of a signal component has never been — and
may never be — clearly defined.

In this paper, rather than address the question “what is a com-
ponent?” directly, we will investigate several quantitative mea-
sures of signal complezrity and information on the time-frequency
plane. While they do not yield direct answers regarding the
locations and shapes of components, these measures are inti-
mately related to the concept of a signal component, the con-
nection being the intuitively reasonable assumption that signals
of high complexity (and therefore high information content) must
be constructed from large numbers of elementary components.

Viable measures of complexity and information include the time-

bandwidth product and other moments on the time-frequency
plane, measures of information appropriated from probability the-
ory by Williams et al. [2], and parametric techniques based on
decompositions into elementary building blocks as introduced by
Orr et al. [3].

After defining Cohen’s class of TFRs in the next section, we
introduce these measures in Section 3. Section 4 focuses on
the many attractive properties of a measure particularly suited
to time-frequency analysis, the Rényi information. Extensions,
as well as several possible applications of these measures, are
sketched in the Conclusions.

2. TIME-FREQUENCY REPRESENTATIONS

We will study the complexity and information content of signals
indirectly via Cohen’s class of TFRs, a set of quadratic operators
that indicate the energy content of a signal s as a function of both
time t and frequency f. A TFR C,(¢, f) from Cohen’s class can

be expressed as’ [1]

*This work was supported by an NSERC-NATO postdoctoral fel-
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1All integrals run from —co to o,

RESUME

1l est possible d’envisager beaucoup de mesures temps-fréquence
pour chiffrer I’information contenue dans un signal ou sa com-
plexité. Celles-ci incluent par exemple des extensions de la notion
de produit durée-bande ou d’entropie de Shannon mais, pour les
distributions quadratiques de la classe de Cohen, il apparait que
I’information de Rényi est un outil particulérement bien adapté.
On en détaille les principales propriétés et I’utilisation qui peut en
&tre faite pour la caractérisation de signaux certains ou aléatoires.

Cs(t, f) = ///s'(u——%)s(u+%) ®(4,1)

. I 2M(Ou=0t=T) gy dg dr, (1)

where the function ®(8, ) is called the kernel of the TFR. Ex-
amples of Cohen’s class TFRs include the WD ($(4,7) = 1),
the spectrogram {® = ambiguity function of the time-reversed
window function), and the exponential distribution (®(6,7) =
e~ 18y [1].

The kernel completely determines the properties of its corre-
sponding TFR. For example, a fixed-kernel TFR possesses the
energy preservation property

JJewnaar = [iswpa (2)

and the marginal properties

Jewnu=1wr, [awna=ismr @

provided ®(6,0) = ®(0,r) =1 V0, 7. (The function S(f) denotes
the Fourier transform of the signal s(t).) We will assume through-
out this paper that the signal energy is normalized to one, that
is, f|a(t)}2dt =1.

The formulas (2) and (3) evoke an analogy between a TFR
and the probability density function (PDF) of a two-dimensional
random variable. This parallel has been exploited with much suc-
cess in the past [1,2]. In fact, as we will see, most measures on
the time-frequency plane have been borrowed directly from prob-
ability theory. However, there are two key points at which this
analogy breaks down. First, because of the freedom of choice of
kernel function, the TFR of a given signal is nonunique. Second,
most Cohen’s class TFRs are nonpositive and, therefore, cannot
be interpreted strictly as densities of signal energy.?> Nevertheless,
concepts from probability theory still have considerable merit in
time-frequency analysis, provided caution is exercised in their in-
terpretation.

3. INFORMATION AND COMPLEXITY
MEASURES

In this section, we will both review existing measures of time-
frequency information content and derive some simple extensions.

2While there do exist classes of positive TFRs that satisfy (2) and (3)
{4], we will consider only quadratic Cohen's class TFRs in this paper.
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3.1. Moment-based measures

A classical measure of signal complexity is the time-bandwidth
product (TBP) A¢Ay, where A, and Ay are the RMS duration
and bandwidth of the signal, respectively. The duration is com-

puted as
2
(A = / £ |s(t)dt - ( / tls(t)l2dt> )

The bandwidth Ay is defined similarly, but with ¢ replaced by
f and s(t) by S(f). Given a TFR C.(t, f) of the signal, the
TBP is readily generalized to a second-order moment in the time-
frequency plane

o = //(t—?f(f—7)2C,(t,f)dtdf. (5)

Here ¥ and f are the mean time and mean frequency of C,(t, f),
respectively.

A drawback of both above measures is that they are inherently
tied to the axes of the time-frequency plane and therefore yield
large values for signals such as chirps having very compact yet
slanted or curved energy concentrations. A more refined measure
of RMS bandwidth is the instantaneous bandwidth [1]

(B, (0F = / [F=T) Cutt, ) df (6)

around the signal’s instantaneous frequency f(t). This quan-
tity can be either computed directly from the signal as f(t) =
= % arg s(t) or estimated from C,(t, f) as its conditional mean
at time t. Averaging this bandwidth over time yields a2 new mea-
sure of local signal energy distribution around the instantaneous
frequency:

TE // (=9 [f=T®] Cs(r, f) atdf. ™

Interpretation problems arise with the measures (5)-(7), since,
due to the nonpositivity of Cohen’s class TFRs, all can take on
negative values. However, kernel constraints can be constructed
to ensure that these quantities remain positive. For example, the
positivity of the measure (6) is guaranteed for TFRs whose kernels
satisfy the constraint ®(6,7) = b(6r), b"(0) = % [1). Kernels
satisfying this constraint are easily constructed; one example is

the kernel [5]
Spep(d,7) = (1 -{-a)e"e2‘r2/ﬂ1 - ae—92r2/52, (8)

with ;—2 = % (1 + -1(;) ﬁl_x The corresponding TFR is equivalent
to a “difference of exponential distributions” (DED).

A problem of more fundamental importance for these func-
tionals is that they do not truly measure signal complexity or
information content [2,3]. "To demonstrate, consider the signal
21(t) + s2(t + T') constructed from two components of compact
support, and note that each of the above measures increases with-
out bound with the separation distance T. However, once s; and
82 are disjoint in time, there is clearly no increase in signal com-
plexity or information content when they are separated further.

3.2. Information measures

More promising as measures of time-frequency complexity are
measures of information borrowed from probability theory, as pro-
posed by Williams et al. [2]. The celebrated Shannon entropy

H(Ca) = _//Cs(t’f) 1082 Cs(t)f) dtdf, (9)

applied here to a normalized TFR C,(, f), belongs to the class
of Rényi entropy measures [6

]
1ialogz //C?(t,f) dt df, (10)

parameterized by o > 0. (The Shannon entropy is recovered as
the limit of R, as @ — 1.} As the passage from Shannon to Rényi
entropy involves only the relaxation of the mean value property

R.(C,) =

of entropy from an arithmetic to an exponential mean [6], Ra
behaves much like H. In particular, these functionals can be
interpreted as inverse measures of concentration or “peakiness,”
since by analogy to probability theory, the outcomes of random
experiments governed by concentrated PDFs are relatively certain
and, hence, yield little information. When applied to a TFR, we
will refer to R4 as the Rényi time-frequency information measure.

Clearly, locally negative values of C,(%, f) will play havoc with
the logarithm in the Shannon entropy, precluding its application
to most TFRs in Cohen’s class. This is not the case, however, for
the Rényi entropies of integer orders & > 2, all of which are real-
valued. We will return to the Rényi time-frequency information
measure in Section 4.

3.3. Expansion-based measures

A different approach to signal complexity estimation has been
proposed by Orr. In [3], the complexity of a signal with respect
to a given discrete basis is defined as essentially the Shannon
entropy of the basis expansion coefficients. Since the resulting
complexity value varies with the choice of basis, it is necessary to
carry out a minimization over all “nice” bases to obtain the true
estimate of signal complexity. Use of the TFRs of Cohen’s class
rather than the Gabor expansions considered in [3] circumvents
to some extent the problem of opiimizing over different bases, but
there remains the choice of particular TFR. Fortunately, we will
see in the next section that the properties of the Rényi entropy
of a TFR appear relatively insensitive to the particular choice of
representation.

4. RENYI INFORMATION

In this section, we will investigate some of the many interesting
properties of the Rényi time-frequency information measure (10).

4.1. Choice of order «

The simplest approach to measuring information on the time-
frequency plane would utilize the (always positive) spectrogram
and the Shannon entropy (9). However, the fixed time-frequency
resolution tradeoff and bias of the spectrogram are undesirable
in some applications. A more satisfactory and general approach
begins with a more general TFR from Cohen’s class and finishes
with a Rényi entropy calculation of order a.

As discussed above, the locally negative values of Cohen’s class
TFRs and the desire for a real-valued information measure pre-
clude all but integer values @ > 2 from the entropy calculation.
The first of these values, o = 2, is easily ruled out, since for the
important WD we have the property that ff WZ(t, fydtdf = 1
[5], and thus Rz {W,) = 0 for all signals. The next possible choice,
a = 3, is the first to yield a useful information measure [2]. Along
with all Rényi entropies of odd orders «, it possesses the following
asymptotic invariance to cross-components in the time-frequency
plane.

Property 1 If the auto-components of a TFR C,(3, f) are sep-
arated in the time-frequency plane such that they do not overlap
with any cross-components, then as the auto-component separa-
tion distance increases, we have

//XC,“(t,f) dtdf — 0 (11)

for all odd o > 1, where X denotes the region containing the
cross-components.‘”

3Sketch of proof: For simplicity, assume that the signal consists of
just two components with compact supports 77 and T, separated by a
distance T (the generalzation to arbitrary signals in L? is straightfor
ward). Let A’(8,7) denote the ambiguity function (the 2-d Fourier
transform of the WD [5]) of the cross-components of Cs(t, f). It
is also compactly supported along the 7 (delay) axis in the ranges
7 € £{|T|,|T|+ T1 +T2). Note that the integral (11) equals the value of
the a-fold 2-d convolution [(A’®) » (A’ ®) x...* (A’®)]}(0,0), where ¥ is
the kernel of Cs(2, f). Performing this convolution yields the constraint
T> 32_—1 (T1 4+ T2) on the separation distance that must be satisfied for
(11) to hold. Note that this requirement grows linearly with the Renyi
order parameter, justifying a preference for 3rd-order Renyi information
over other, larger orders.



4.2.

For signals satisfying the separation conditions of Property 1,
the TFR C,(t, f) is “quasi-linear,” and therefore each auto-
component contributes separately to the overall R,(C,) infor-
mation value. In this case, the similarity to composite PDFs of
statistically independent events suggests that we should expect
an additive or counting behavior from Rq(C,).

Counting property

Property 2 Let s(t) and 3() = s(t) + s(t+ T) be signals with T
chosen such that the conditions of Property 1 hold. Then for odd
o > 3, we have Ra(Cs) = Ra(C,) +1.2

As an example of this property (2], consider the R3(W,} infor-
mation of the signal g(t) + g(t + T), with g a lowpass Gaussian
pulse. This information is plotted in Fig. 1 versus the separation
distance T in units of A, (4) for g(t). (At T =0, the two pulses
coincide and therefore, because of the assumed energy renormal-
ization, have the same information content as a solitary pulse.)
The TBP of the signal is also plotted. It is clear from the figure
that, unlike the TBP which grows without bound with T, the
information measure saturates exactly one bit above the value
R3;(W,) = 2.44. Similar results hold for three separated copies of
g(1) (log,3 bits information gain), four copies (2 bits information
gain), and so on.

This counting property of the Rényi information suggests a
concept of Rényi dimension for the WD, defined as Dq(Ws) =
2Ra(We)=Ra(Wg)  This dimension indicates — relative to a “basis”
of Gaussian building blocks — the number of blocks required te
“cover” the WD of a given signal. Similar measures can be derived
for other TFRs and other elementary building blocks.

4.3.

The results of Fig. 1 are very appealing, but are also incomplete
and unrealistic, because no modulation or phase differences were
introduced between the two signal components. Figure Z illus-
trates a more complete set of curves of the R3(W,) information
for the signal g(t) cos(nt/6) + g(t + T') cos(x(t + T)/6 + ). Each
curve corresponds to a different relative phase angle 3 between 0
and 7. It is apparent from the curves that while phase changes do
not affect the saturation levels of the information measure, they
allow many possible trajectories between the two levels, includ-
ing even trajectories where an “overestimation” of information
content occurs.

Phase sensitivity

To interpret these results, note that as we decrease T, the auto-
and cross-components of the signal begin to overlap in the time-
frequency plane so that Property 1 no longer holds. At this point,
relative phase plays a key role in determining information content.

In fact, the sensitivity of the R3(W,) measure to phase is quite
reasonable, given the sensitivity of closely spaced signals to rela-
tive phase. For example, Fig. 3 shows the composite signals and
their respective WDs for the offset T = C and relative phases
¢ = 0 and ¢ = Z. The difference in appearance is striking —
clearly the components in the signal and WD at top are more
separated than those on the bottom. Accordingly, the Rs(W,)
informations for the two signals are 3.96 and 2.96, respectively.

Property 3 For odd a > 3, the Ro(W,) time-frequency infor-
mation measure is very sensitive to the relative phases of closely
spaced signal components.

4.4.

Since relative phase information is carried by the cross-
components of the WD, it seems reasonable that smoothing the
WD (choosing kernels other than @ = 1) would lessen the effect of
relative phase on information estimates. Figure 4 shows this to be
the case, by repeating the same experiment as in Fig. 2, but with
a matched window spectrogram TFR rather than the WD. While
the spectrogram R, information estimate remains phase sensitive,
it climbs more swiftly to the saturation level and with a reduced
overshoot than R3(W,). The price paid for this improved perfor-
mance is a signal-dependent bias of information levels compared
to those estimated using the Wigner distribution.

Effects of smoothing

4The result follows directly from Property 1 and the quasi-linearity
of Cs(t, f) for well-separated auto-components.

Property 4 Smoothing reduces the sensitivity of a Rényi infor-
mation estimate to relative phases between signal components.

It is important to note that some smoothing is crucial for accu-
rate information estimates for complicated multicomponent sig-
nals with overlapping auto- and cross-components.

4.5.

Time-frequency information estimates are also very useful for ran-
dom signals; however, care must be taken not to confuse the Rényi
information of the TFR of a random signal with the Rényi infor-
mation of the PDF of the signal.

The R3(W,) time-frequency information estimate provides an
alternative to the signal-to-noise ratio (SNR) for signals embed-
ded in additive noise. For example, Fig. 5 illusirates the rela-
tionship between the two for a single Gaussian pulse in white
Gaussian noise. Interestingly, the sigmoidal characteristic of the
information measure behaves more like our eyes and ears than
the SNR: for high SNRs, it indicates that there is virtually only
signal present, whereas for low (negative) SNRs, it indicates that
there is virtually only noise present. Furthermore, the 0 dB SNR
point (the point of equal signal and noise energies) occurs roughly
midway between the two information extremes.

Random signals

Property 5 The Rényi time-frequency information measure is
an interesting alternative to the SNR for signals in noise.

4.6. Normalization

Finally, we note that the definition of Rényi entropy introduced
for TFRs in [2] and utilized in this paper is subtly different from
that proposed for PDFs in [6]. While the measure (10) assumes a
pre-normalization of signal energy to unity, the original definition
of Rényi, denoted here by Ry, utilizes a post-normalization:

1 Jfcx, f) dtdf

! —
R.(C,) = T log, TTemnas (12)
The two measures are related by RL(C.) = Ra.(C,) -

log, [f Cu(t, f) dtdf = Ra(C\) — log,®(0,0) [ |s(t)|?dt, and thus
R, (C,) varies with the signal energy. Due to this dependence,
many key properties of Ro(C,) and R, (C,) do not coincide. For
example, for R,(C,), Property 2 changes from a counting prop-
erty to an invariance property.

5. CONCLUSIONS

Unlike the TBP and other moment-based measures, the Rényi en-
tropy measure shows great promise for estimating the complexity
of signals via the time-frequency plane. Possible applications in-
clude adaptive transforms that minimize the complexity of the
TFR, contrast measures for signals in noise, and information-
theoretic distance measures between different TFRs.

This paper has not addressed the question of choosing the ap-
propriate TFR from Cohen’s class for the information calculation.
In fact, other classes of TFRs, such as the positive distributions
[4] (which would allow the unrestricted use of the Shannon en-
tropy) and the affine class of time-scale distributions [5] (which
contains the squared magnitude of the continuous wavelet trans-
form) could prove more appropriate for certain classes of signals.
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Fig. 1: R3(W,) information of WD and TBP
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Fig. 2: R3(W,) information of WD vs. compo-
nent separation, various relative phases.
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Fig. 3: (a) Two modulated Gaussian pulses with relative phase ¥ = 0 rad. (b) WD of signal in (a), R3(W,) = 3.96.
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