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RESUME

Il est propose un alogarithme simple pour
le calcul de ’appreciation spectrale de la norme
minimum. Le preésent alogarithme a un avan-
tage signifiant en diminution des operations par
rapport a celui standard de la norme minimum
dans le cas ou le nombre de sources est assez
moins important par rapport au nombre d’ele-
ments de la grille d’antenne.

1. INTRODUCTION

The eigenstructure based direction of arrival
(DOA) estimation methods have been a topic

of great interest since the classic works of Pis-

arenko [1], Schmidt [2], Bienvenu [3], Kumare-
san and Tufts [4]. The high-resolution minimum-
norm estimator, proposed by Kumaresan and
Tufts [4], is one of the popular methods of DOA
estimation, because provides excellent perfor-
mance of resolution of multiple sources in pas-
sive sensor arrays for a wide signal/noise ratio
(SNR) range.

The original Kumaresan and Tufts algorithm
calculates the eigendecomposition of spatial co-
variance matrix and employes the noise subspace
projection matrix in spectral estimate. As a re-
sult, the computational loads of this algorithm
are very high. Recently, Brandwood [5] designed
several fast algorithms for estimation of noise
subspace projection matrix without eigendeco-

ABSTRACT

The novel fast algorithm for minimum-norm
direction of arrival estimator calculation is pre-
sented. This algorithm employes special power
basis instead of eigenvector one and requires only
a priori knowledge of a threshold between signal
subspace and noise subspace eigenvalues. Pre-
sented algorithm provides essential computatio-
nal savings when the number of multiple sources
is much less then the number of sensors.

mposition, but these algorithms require a priori
full knowledge of noise spatial covariance ma-
trix.

Our paper also presents a novel noneigenvec-
tor fast algorithm for minimum-norm DOA esti-
mator calculation. This algorithm requires only
a priori knowledge of any threshold between sig-
nal subspace and noise subspace eigenvalues of
spatial covariance matrix and employes special
power basis instead of eigenvector one.

2. POWER BASIS

Let consider a linear array of p sensors and
let ¢ (¢ < p, assume that ¢ is known a priori)
multiple narrowband signals impinge on the ar-
ray from DOA’s {6,,0,,...,0,}. The p x 1 vec-
tor of signals, received at the array, can be ex-
pressed as

r(t) = A s(t) + n(t) (1)
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where s(t) is the ¢ X 1 vector of complex sig-
nals of ¢ wavefronts, n(t) is the p x 1 vector
of additive noise in sensors and A is the p x ¢
matrix

A(t) = [a(by),a(bs),...,a(f)]  (2)

Here a(#;) is the steering vector of the array
toward the direction 4;.

Assuming that additive noises are uncorre-
lated with the signals and between sensors and

2 in each sensor, we

have identical variance o
have, that spatial p X p covariance matrix of

array outputs
R=E[r(t)r (1)) = ASAY + 5T

where E[-] denotes the expectation operator, H
denotes conjugate transpose, S = E[s(t)s"(t)]
is the ¢ X ¢ matrix of signal amplitudes, I is the
p X p identity matrix.

The eigendecomposition of the covariance ma-
trix R yields

p
R=>3 \uul
i1
where \;;, i=1,p (M > A >--->),) and

u; are the z-th eigenvalue and ¢-th corresponding
eigenvector, respectively.

The following properties hold [1,2]:

1) The minimum eigenvalue of R is equal to
o? with multiplicity p — ¢. Then, we have

AL A2 a2 A > Ay =

e = /\p = o? (3)

2) The eigenvectors corresponding to the min-
imum eigenvalue are ortogonal to the columns
of the matrix A. Namely, they are ortogonal to

the steering vectors of the signals:

= /\q+2 =

{wgt1,Ugp2,. .., up} L {a(by),

a(f2), .., a(0,)} (4)
Theorem 1 [f the multiplicity of the minimum
etgenvalue of the matriz R is equal to p—gq, then
matriz R with any power | can be ezpanded as
a linear combination of matrices of finite power
basis {I,R,..., R}, i.e.
R=1+R+.. + R
where {c(()l), cgl), .
power .

(5)

,cgl)} are the coefficients for

Thus, for the arbitrary power [ and the ar-
bitrary p x 1 vector f the following finite power
vector basis expansion exists:

Rf=c'f+'Rf +---+RF  (6)

3. REPRESENTATION OF
MINIMUM-NORM SPECTRA

The minimum-norm algorithm estimates the
DOA’s as a locations of ¢ highest peaks of func-
tion (6]

1
N ~ H 2
la® ()UnU ye|

Pyn(0) = (7)

where a(#) denotes a p x 1 array steering vector
toward the direction 8, e; denotes p x 1 vector
with all zero elements except the first one, equal
to unity, Uy = [Ugt1, Ugsa, . .., Uy is the pXp—
g matrix, constructed with the noise subspace
eigenvectors, corresponding to the smallest p—g¢
eigenvalues of sample covariance matrix:

A

R = ’l‘(ti)TH(ti)

1

(8)

k

1
k

1

where k is the total number of data snapshots.
Here we ignore the constant (e'{“(I_‘Af]\;f/'f\,lezl)2 in
the numerator of (7), because it does not alter
the shape of spectra.

Theorem 2 If A\, is the threshold between sig-
nal subspace and noise subspace eigenvalues of
sample covariance matric R, i.e. 11 < Ay <

~

Ag, then

lim (P..(0)) = Pan(6)

m—+00

(9)

Pm(H): ! 2

cm N\
|aH(9)(A; R +I) e1]

thr

(10)

So, the function P, () for any value of m is the
approximate representation of the minimum-no-
rm function Py (f). The distinction between
these functions decreases as the power m in-
creases.

4. FAST MINIMUM-NORM
ALGORITHM



Let derive the fast minimum-norm DOA es-
timation algorithm using the introduced approx-
imate representation of function Ppy(#). The
problem is to calculate the vector

(B2 + 1) e

without the inversion of p x p matrix.
~ g+1 .
Represent the vector R’ e, as the finite
power expansion Be, where

Bz[el,f:lel,...,ilqel] (11)

is the p X ¢ + 1 matrix, ¢ = (co,¢1,..-,¢,)7 is
the ¢4+ 1 x 1 vector of coefficients of expansion,
T denotes transpose.

The LMS solution for vector e, which mini-

mizes the norm Rq+lel — Bel|, 1s given b
g y

¢=(BYB)'BHIR" e, (12)

Now let find the vector ((R/z\thr)m + I) - e;

as a finite power basis expansion Bd, where d is

the ¢+ 1 x 1 vector of coefficients of expansion,

which must be obtained. The following linear
matrix equation must be solved

1 om -
thr

The p x ¢ 4+ 1 matrix RB can be represented as
~ g+1

RB = [R€17R281,...,R 81] (14)

Let use the LMS approximation B¢ instead of
vector Rq“el in (14). Then, we have:

RB ~ BG (15)

where G is the ¢ + 1 X ¢ + 1 Frobenius matrix:

0 6 ... 0 ¢

1 0 ... 0 &
G=|01 0 & (16)

00 ... 1 ¢

From (15) it also follows, that
R"B~ BG™ (17)
Formula (11) yields

e; = Bg, (18)

ou/

where g, denotes the ¢ + 1 x 1 vector with all
zero elements except the first one, equal to unity.
Using this formula and (17), the approximate
solution of (13) can be written as

-1
d = (%Gm 4 I) g, (19)
thr
Here I denotes the g+ 1 x g+ 1 identity matrix
(in the above equations the dimension of this
matrix was equal to p X p).
Fast algorithm:

Step 1 Calculate the vectors ey, Rey, ...,
- g1

R ey

Step 2 Calculate the vector ¢ using (11), (12).

Step 3 Calculate the vector d for the con-
crete value of parameter m using (19), (16).

Step 4 Calculate the approximate minimum-
norm spectral estimate (10) using (13).

Step 5 If the accuracy of the approximation
of exact minimum-norm spectral estimate (7) is
low, then increase m and go to the Step 3.

To compare the computational loads of orig-
inal and presented minimum-norm algorithms
note, that for the low number of sources (¢ < p)
the general loads of presented algorithm are at
the Step 1 (~ ¢p? complex multiplications). So,
in this case our algorithm provides a substantial
saving as compared with direct eigendecomposi-
tion based algorithm, which requires more than
p® complex multiplications.

5. SIMULATION RESULTS

It should noted, that the presented algorithm
1s the approximate technique because of using
the finite power expansion in the sample case
and the finite value of parameter m. Its ac-
curacy was compared with the eigendecompo-
sition based (direct) minimum-norm algorithm
by computer simulations.

We assumed an uniformly spaced linear ar-
ray of ten sensors with half-wavelength spacing.
The number of snapshots taken was 100. We
considered two uncorrelated sources with the
equal power for wide SNR and locations val-
ues. Simulations show, that the accuracy of the
fast minimum-norm algorithm is very high. The
direct and approximate spectral estimates coin-
cide with high precision for m = 4...10.
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5. CONCLUSION

We present novel fast noneigenvector algo-
rithm for calculation of well known Kumaresan
and Tufts minimum-norm DOA estimator. Our
algorithm requieres only a priori knowledge of
threshold between signal and noise subspace ei-
genvalues of covariance matrix and is approxi-
mate. Its accuracy was examined by computer
simulations. Simulation results verify high pre-
cision coincidence of eigendecomposition based
and presented algotithms.
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