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RESUME

Le probléme d’évalution de caractéristiques
de sources acoustiques de bruit au moyen de me-
sures d'un champ voisin est considéré. Le cal-
cul des algorithmes pour obtenir des estimations
déplacées est démontré nécessire. Il y a deux al-
gorithmes a proposer afin de traiter des données
relatives aux mesures d'un champ voisin, 3 sa-
voir: l'algorithm basé sur un comportement a-
symptomatique & hautes fréquences visant a ré-
soudre une équation intégrale respective (CAHF-
algorithme) et l'algorithme d’estimation au deg-
ré maximum de vérité avec régularisation (ED-
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MR-algorithme). Certains résultats de simula-
tion numérique sont présentés.

1. INTRODUCTION

At present the near-field methods (NFM)
are broadly used for measuring direction pat-
tern of microwave antenna. It is known that
both the direction pattern and the amplitude
and phase distributions on antenna can be de-
termined by processing of near-field data mea-
sured in the region where the direction pattern
is not formed. The main advantages of the NFM
arising from nearness of radiating source to re-
ceiving system are possibility of decreasing a ra-
diated power level and suppression of a recon-
struction error component connected with prop-
agation medium, reverberation effects etc. In
acoustics the NFM can be generalized for pos-
sibility of measuring characteristics of extensive
sound sources with complex unknown spectrum
(for example, for diagnostics of noise radiation
of cars, ships and so on). The final aims here
are determination of angular distribution of ra-
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diation intensity in far field and reconstruction
of elementary source distribution directly on ra-
diator. For that we have been developing the
NFM in following directions. Firstly proces-
sing algorithms have to be generalized for broad-
band signals having random nature. In this
case the dependencies of acoustical field second
moments on frequency and spatial co-ordinates
must be estimated. Secondly special attention
must be given to algorithm robustness against
noise because in many real situations the mea-
sured acoustical signals are comparable with a
noise background. Thirdly the radiator motion
and the propagation conditions have to be taken
into account.

To conclude, let us note that in low frequen-
cy range the most available measuring system is
a linear antenna array. On the other hand, there
are many types of acoustical radiators essential-
ly oblong along one of the coordinate axes. The
radiation of sources with such geometry can be
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described by elementary sources placed on a line
segment. In the main we have been investigat-
ing the systems with a similar geometry.

1. GENERAL STRUCTURE OF
PROCESSING ALGORITHMS.
MODELS OF RECEIVED SIGNALS

When a noise stationary broad-band signal
with unknown spectrum is radiated we estimate
spectrum-angular distribution of radiation pow-
er in the far field B(f,0) = E{|R™(f,9)|*} and
spectrum-correlation function M(f, z1,z2) =
IE{ms(z1)m}(z2)}, where sign * denotes com-
plex conjugate, IE{.} is the expectation opera-
tor, R™(f, 6) is the momentary direction pattern
for frequency f, function mys(z) describes the
random elementary source distribution on radi-
ator for frequency f. To this end we propose to
divide the near-field data processing into four
main stages:

1) current spectrum analysis (filtering signal of
every receiving sensor by narrow bands);

2) spatial processing: transformation of array
signal vector into momentary direction pattern
vector or into momentary spatial distribution of
elementary sources on radiator for every spec-
trum component and every time moments;

3) estimation of second order moments by tem-
poral averaging with weight coefficients;

4) compensation of external noise influence.

The first stage of measured signal {s,(¢;)}
processing is the calculation of current spectra.
After the current spectrum calculation for ev-
ery receiving sensor we have a set of vectors
P; = {pl,....,pn,} (where N, is the number of
receiving sensors, j is the number of time mo-
ment of current spectrum component) for every
central frequency fi. The vectors p; can be con-
sidered as statistically independent for j.

After the current spectrum analysis the mod-
el of array signals is defined by:

J—1,
(2.1)

where 73; is the vector of external noise on receiv-
ing sensors, the vectors fﬁ; describe the momen-
tary parameters of [-order multipole on radiator,
Gé- is the matrix of transformation coefficients
from source to receiving sensors for frequency f.

p; =8+ = ZG lﬁil—l—nj, 7=0,...,

We will use model of monopoles placed over A/2
on radiator. The proposed model allows to syn-
thesize a wide group of direction patterns. This
choice is the result of compromise between the
processing procedure complexity, its instability
and the method error. Below index [ = 0 will
be omitted.

We assume that m; and 7i; are Gaussian with
zero means and covariance matrixes M and K
which do not depend on time:

E{mmf} =M, E{#i[}=K, (22)
where sign + denotes conjugate franspose. If
spectral power density of signal and noise are
approximately constant in band Af and tem-
then
§; and 7i; are statistically independent. Then
the covariance matrix of received signal p; has

the form:

poral interval between counts equals <7,

P; = E{f;p} } = G;MG} + K. (2.3)

The momentary direction pattern can be pre-
sented by the vector R

23 = 1 —orilaysi
.W:UW,U:FWQCWW (2.4)
where 7, 1s some standard distance for normal-
ization. We are interested in the estimation of
angular distribution of radiation power (diago-
nal elements of matrix R):

R =FE{RRI"} = UMU* (2.5)
or in estimation of the covariance matrix M of
elementary sources on radiator. Thus the pro-
cedure of spatial processing consists in the esti-
mation of momentary spatial distribution of ele-
mentary sources on radiator or in the estimation
of momentary direction pattern from received
signals:

e
—

Ry =T ﬁj (26)

The third and forth stages of proposed tech-

nique include time averaging with weight coef-

ficients permitting to minimize the total esti-

mation error, and the compensation of external
noise influence:

= kiRl —

J

Ry, = B(0k) R, (2.7)



The matrix of spatial processing can be de-
duced from statistical and other criteria. The
algorithm of high frequency approximation (the
HFA-algorithm) and the algorithm of maximum
likelihood estimation with regularization (the
MLER-algorithm) are two different approaches
to the determination of matrix I';.

3. THE HFA-ALGORITHM

For direct estimation of angular distribution
of radiation power in the far field the HFA--
algorithm can be designed:

do | .
T = - %p(wn,()k)e_z’r’fgl(””’o"), (3.1)

(sin §sin Az, — cos 0 cos A\/22 + Ah?)?

p(Tn,0) =

cos 04/z2 + Ah?
[(z,0) = sin Qw, + cos 01/2% + Ah?

2y = Tpsin A+ (yocos A — zosin A)
wy = T sin A — (yosin A — zgcos A),

where d, is the distance between sensors, z, is
the co-ordinate of receiving sensor n, (Zo,¥o)
is the arbitrary trajectory point co-ordinates in
horizontal plane, A is the angle between source
trajectory and array disposition line in horizon-
tal plane, Ah is the difference of source and ar-
ray disposition depths.

As follows from (3.1), T#F4) does not de-
pend on the given location of radiator. This
fact considerably simplifies the processing and
so the main properties of obtained estimates can
be studied on the basis of the HFA-algorithm.
It can be shown that for every given location of
radiator the angular distribution of radiation in-
tensity is reconstructed with a small error only
within a definite angular sector [64;,8,;]. This
sector will be called by a "trustworthy recon-
struction sector” (TRS). From the results of nu-
merical simulation we concluded that the recon-
struction error within the TRS weakly depends
on the concrete amplitude-phase distribution of
elementary sources on radiator. Then for every
motion trajectory the TRS can be constructed
by numerical simulation for model source. The
method of TRS construction consists in calcu-
lation of estimate I/%;”"d(é?k) and its comparison
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Figure 1: The transformation of trustworthy recon-
struction sector on the plane (0, S = vt) for a source

motion parallel to the receiving array (A = 0°)

with exact model angular distribution R7**%(6).
The TRS transformation on the plane (6,5 =
vt) is shown in Fig. 1 for parallel source motion
relative to the receiving array (A = 0°).

Taking into account this method of TRS de-
termination the weight v, in formula (2.8) is
equal to 1 if the condition (3.2) is true and
v;& = 0 in the opposite case.

We found out that the robustness against
noisc deteriorates with an increasing receiving
array length. This deterioration is connected
with non-optimum of the HFA-algorithm because
it does not take into account the finite source
dimension and given source location on the tra-
jectory. The other problem of using the HFA--
algorithm is the difficulty of its generalization
for cases when the propagation conditions con-
siderably differ from free space. These circum-
stances restrict the possibilities of using the HFA-
algorithm and one needs to design the optimum
reconstruction algorithm. In the next section we
propose the version of such algorithm design.

4. THE MLER-ALGORITHM

For model of received signal (2.1-2.3) the
processing algorithm based on the known max-
imum likelihood principle can be designed. The
likelihood function for statistically independent
Guassian set g is determined as:

lnw, = —0.5Y_[FfP;'f; + In det(P;)] + const
J

(4.1)
We will consider the reconstruction procedure
only for matrix R because the one for matrix
M is analogous.
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We can assume that angles 8 and the ele-
mentary source co-ordinates satisfy the relation-
ship:

. . 1
E($l+1 — 21)(sin Opyy — sin ) = T

(4.2)

where L is the number of elementary sources.
Then U is the unitary matrix: U™ = %U+
and we define M = UT'R(U™')*. From (2.3)
we get:

P; = H;RH + K, (4.3)

where H; = G;U™" = %GjU+. Differentiating
(4.1) in R we obtain the non-linear equation for
finding an asymptotically effective estimate R:

> H;(P;'S; Pyt — P;HHT =0, (4.4)
J

where S; = p;p}, P; and the relationship be-
tween P; and R are defined by (4.3). From
equation (4.4) the linearized estimate has been
obtained for an immovable source and general-
ized for a moving one. The processing procedure
can be realized by the momentary direction pat-
tern estimation and by the following trajectory
averaging:

I

Br; = B HY

Rue = 30 g IR — BT,
J

(4.5)
(4.6)

where H; = G]'U_l, B, = H;-Hj =

= (UH*GIG,;U™, 'y,(;;-) are the normalized
Weights, Rcomp — B—lscompB—l’ Scomp —
=023, B; (for K = o21).

The practical use of the algorithm (4.5)-(4.6)
is connected with a possibility of GtG inver-
sion. The fact of small eigenvalues in the matrix
spectrum is very important for a spatial proces-
sing algorithm design. It means that modifi-
cation of maximum likelihood algorithms is re-
quired to obtain biased estimates.

The modification method for obtaining bi-
ased estimates is based on model (2.1-2.3). We
will assume that some determinate vector m (or
ﬁm) corresponds to every time moment j. Then
the probability density w, of the vector 7 is de-
termined by mean G (or HR™) and covari-
ance matrix K. We will also assume that possi-
ble realizations generate the statistical ensemble

with a priori probability density wep, character-
ized by mean i, and covariance matrix Mgyp,.
For deduction of spatial processing matrix we
can A
a) minimized the total estimation error E{(m—
m)+(m — i)} or B{(Rm — R")*(B™ — B},
where %, R are desired estimates;
b) maximized the generalized likelihood func-
tion WyWw,pr in unknown parameters 7 (or R.m)

If we do not have a priori information about
distribution of elementary sources it is advisable
to set My, = }—;JQI from the information criteri-
on. For this type of M,,, and K = oZI the
matrices of spatial processing are identical for
cases (a) and (b):

_ Lo?
'=U(G'G +eI)7'GH, e = =2

2
TSPO

(4.7)

In the complete processing algorithm G and T’
must be replaced by current matrices. The pa-
rameter ¢ regulates the contributions of bias and
dispersion to the total error. If € decreases, then
the bias decreases too, and the dispersion in-
creases. The total error reaches the minimum
value for the optimum e. The optimum ¢ for
one time realization is given by (4.7).

The final step of the MLER-algorithm design
is the choice of weights. For this purpose we
minimized the total estimation error for special
type of M = ]—ZQI corresponding to the model
of absolutely non-coherent source and for K =
021. The weights ; are found in explicit form
for this case.

5. OUTLOOK

The results of an extensive simulation and
the source characteristic reconstruction in nat-
ural experiments show that the estimates based
on the above-mentioned algorithms have high
accuracy. Furthermore, the MLER-algorithm
allows to adapt the signal processing to complex
source structure and to propagation medium by
setting model Green’s function G nearest the
real one. It is believed that, besides being used
for investigation of acoustic object noise radia-
tion, the MLER-algorithm can be developed for
broad sphere of applied problems.



