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RESUME

Un probléme couramment rencontré dans de
nombreux domaines (économie, médecine, astronomie, ...)
est celui de l'estimation spectrale de données échantillonnées
irréguliérement. Nous proposons dans cet article une méthode
basée sur une interpolation des données par des fonctions
radiales, suivie d'un ré-échantillonnage régulier et d'une
estimation spectrale classique. Nous montrons qu'il est
possible, sous I'hypothese d'une connaissance au moins
partielle de la bande de fréquence utile du signal étudié, de
définir un critere permettant d'optimiser l'interpolation
cffectuée ot donc l'estim
résultats de tests réalisés sur des signaux simulés et
expérimentaux.

ot .
¢t donc l'estimation spectrale. Nous présentons des

1. INTRODUCTION

In many applications, one is confronted with the problem of
dealing with unequally-spaced data series. There are several
causes to irregular sampling: some data points may be
missing in otherwise equally spaced data (e.g. economic data
available daily, except on Saturdays and Sundays); the data
points may inherently be obtained at random locations in
time or space; data obtained manually (medical data such as
blood pressure or body temperature) or data obtained over a
long period of time (astronomic and environmental
measurements such as the light variations of a pulsating star,
or the stratospheric ozone thickness) are very likely to suffer
from unequal spacing, with random sample spacings and
possibly extended gaps.

Different methods have been elaborated to analyze such
irregularly-spaced data. Stellingwerf (1] carried out a period
determination using phase dispersion minimization, which
seems well suited to short data series of non-sinusoidal
periodic signals. Shumway [2] studied maximum likelihood
estimators for parameters in missing data problems. Deeming
{3] stated that the discrete Fourier transform of the irregularly-
spaced samples is the convolution of the Fourier transform of
the unknown underlying continuous signal from which only
unequally-spaced samples are known, with a spectral window-
depending only on the times of observation,

In this paper, we propose a spectral analysis scheme via an
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knowledge about the frequency range of the signal under
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results of tests performed both on rcal and experimental
signals.

interpolation of the data. The approach consists first in
interpolating the available irregularly-spaced data samples,
then in performing digital spectral analysis on the regularly
re-sampled interpolated signal. Some special feature of the
spectral analysis is used as a criterion to select the free
parameter of the interpolation process. Specifically, it is
assumed that a frequency band can be provided, out of which
the analyzed signal is very unlikely to have significant
spectral components. The interpolation scheme chosen is a
Radial Basis Function (RBF) one [4, 5] with a free parameter
designated by s. The value of s is taken so as to maximize
the power spectrum of the interpolated signal in the specific
frequency band selected. Note that, although spectral
estimation was the main motivation for this study, a direct
byproduct is data interpolation itself, a problem of current
interest in many branches of time series analysis [8].

Section II first reviews briefly the features of RBF
interpolation in the special case of Gaussian radial functions.
The interpolation optimization via the spectral band power
criterion is then introduced. Finally, some results of the
method are illustrated in Section III on simulated signals and
in section IV on real astronomical data.
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II. OUTLINE OF THE METHOD
A. Radial Basis Function Interpolation

The Radial Basis Function (RBF) interpolation provides an
approximation of a function given a sequence of samples of
this function at irregularly-spaced time locations. We shall
concentrate here on the real-valued, univariate case.
Generalization and other relevant issues may be found in
Powell [4].

Let us denote by {f(t;) : i = 1,2,...N} the available data
samples, and by {¢; - i = 1,2,..N} the strictly increasing set
of sampling times. The interpolated continuous function v is
then given by

N
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where the {cj ;i = 1,2,... N} are the interpolation coefficients
, and where 4 is a function from R* (0 R. If we define r; =
lt-¢; [, then each function k(r;), called radial basis function ,
depends only on the distance r; from the reference sample i .
In this paper, we shall focus on the Gaussian case

h(x) = exph=?is?) @

with standard deviation (sometimes called bandwidth) s,
though other relevant choices for 4 exist. The N interpolation
conditions

v)=fG)  i=1,2,..,N 3)

must be satisfied. With eq. (1), this leads to

N
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i=1

k=1,2,...,N.

This is a square linear system in the ¢; coefficients, namely
Ac = v, in which the elements of matrix A are given by

Ay =h(!tk~t,-]) i,k=12,....N (5)

For many choices of RBFs, the interpolation matrix A
defined by eq. (5) is guaranteed to be non-singular under very
mild or no restrictions on the locations ¢; of the interpolation
points. Micchelli [6] has shown that the interpolation matrix
A is always non-singular for Gaussian RBF if the ¢; are all
distinct. This important result allows the interpolation
coefficients ¢; to be uniquely defined.

B. Spectral Criterion for the RBF Interpolation

It should be once again emphasized that the only free
parameter of the Gaussian RBF interpolation is the standard
deviation s of expression (2), which states that the
interpolated signal is a linear combination of N Gaussian
functions placed at each of the unequally-spaced times ¢; .

The original feature of this paper lies in the way the
parameter s of the Gaussian RBF is selected. It is assumed
that the frequency components of interest are known a priori
to lie in the band [fz, fiy]. The interpolated function v(t)
given by eq. (1) is then regularly sampled :

vin]=v(nT,) 1 <nT, <ty ©®)

and a power spectral density (PSD) estimate is computed.
Either non-parametric or parametric (AR model based)
estimators [7] can be used. The effect of the Gaussian
parameter s on the power spectrum can be described as
follows: (i) For too small a value of s, the signal v/a] is
most unsmooth, with non-zero samples only in the close
vicinity of the original unequally-spaced points: the resulting
PSD is quite flat. (ii) For too large an s, the signal v[n] is
oversmoothed, and its PSD is concentrated in the lower
frequencies. Hence, the spectral criterion chosen is the power
in the band [fy, fiy] normalized by the total cstimated
spectrum power. We express this relative power criterion as:
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where P(f) is the PSD estimate and fs is the regular
sampling frequency. The value of s that maximizes eq. (7) is
selected as the parameter value for the Gaussian RBF
interpolation of the unequally-spaced data, and this yields the
corresponding PSD estimate.

It should also be mentioned that the interpolation matrix
tends towards singularity as s becomes larger. In such a case,
the interpolation is no longer achievable in finite precision
arithmetic. This is an upper bound to the range of
investigation for s.

C. Use of multiple bandwidth RBF interpolation

It is well known that better interpolation results are obtained
if one uses a different RBF al each data point, i.c., eq. (1) is
changed to:

N

V(t)z Z Cih;‘(ll - lil) ®)

i=l
with:
hix) = expll2) ©)

It is clearly impossible in practice to try to optimize the
interpolation with respect to all the parameters (s;}. We
developed instead a heuristic formulation in which the
parameter s; corresponding to a particular ¢; of the set of
sampling times is proportional to the average difference
between ¢; and the sampling times which precede and follow
it, that is:

d(n- ti1) ;(tm - 1) (10)

si=




This choice can be justified as follows: if the sampling time
t; is close to ¢;.1 and {;+1, then the influence of the
corresponding sample should not extend too far, and
accordingly s; must be small. On the other hand, if ¢ is
isolated, then the influence of the sample must increase, and
s; must be large. An advantage of this scheme is that, like in
the above single RBF one, optimization has to be performed
on one parameter only, i.e. the scaling factor 4 in (10).
Experiments performed show that this modified method often
yields better results than the basic one.

III. RESULTS ON SIMULATIONS

A signal consisting of two sinusoids (f] = 0.10, f2 = 0.13
Hz) embedded in white noise (SNR=10dB) has been Poisson-
sampled (mean of Poisson process = 4 sec.), providing 40
unequally-spaced data samples. A resampling at fs = 0.8 Hz
has been performed. Fig.1 shows the optimization curve p(f7,,
frj with respect to the parameter s, with f;, = 0.05 Hz and
fi = 0.20 Hz. Figures 2-4 show threc AR(20) spectral
estimates (in dB vs Hz): Fig.2 corresponds to the case where s
= 0.10 has been used to interpolate the data, Fig.3
corresponds to the case s = 4.0, whereas Fig.4 represents the
spectrum obtained in the case s = 1.8, which is the optimal
value given by figure.1. This last spectrum cxhibits two
strong peaks corresponding 1o the two sinusoids of the signal,
while the effects of respectively under- and oversmoothing are
clearly visible on figures 2 and 3.
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Fig.1 : Relative power in freq. band [0.05, 0.20] vs s
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Fig.2 : AR PSD estimate for s = 0.1
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Fig.3 : AR PSD estimate for s =4.0
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Fig.4 : AR PSD estimate for s = 1.6

APPLICATION TO AN EXPERIMENTAL SIGNAL

The multiple RBF method of section IT C has been applied to
a photometric data series obtained from a variable star. This
series is composed of 171 samples covering a time period of
555 days, which corresponds to an average of 0.308
samples/day. Standard astronomical tables indicate that the
light variation of this star exhibits three spectral components
corresponding to frequencies of f; = 0.58 102, f; = 0.91 102,
and f3 = 1.37 102 [day™!]. The method used to estimate these
frequencies has not been cited, and has probably not been
employed on this particular photometric series.

The frequency interval was chosen to be [f7, fiy] = [0.05,
0.20] day'!. Note that in the case of stellar photometric data
additional information on the star under study (size, age, ...)
usually provides an acceptable frequency interval. Figure 5
shows the evolution of the relative power criterion with
respect to the scaling parameter 4 in (10) or twenty values
between 0.1 and 2. A resampling frequency fg = 0.05 was
selected and an AR(10) power spectral density estimation was
used.
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Fig.5 : Relative power in freq. band [0.05, 0.20] day ! vs 4

The optimum is reached for d = 0.6. This parameter value
yields the power spectral density estimate displayed on figure
6. '
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Fig.6: optimal PSD estimate (horiz. [day™1]).
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The three peaks are clearly visible. Their locations, namely
0.56 1072, 0.93 102, and 1.38 102 day"!, compare very
favorably with the announced values. On the other hand,
Deeming's method [3] performs rather poorly on this series,
as illustrated by figure 7. The third peak is barely visible, and
a spurious low frequency one is present.
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Fig.7: PSD estimate using Deeming's mcthod

CONCLUSION

In this paper we have presented a spectrum based RBF
interpolation scheme providing a technique for power density
spectrum estimation of irregularly-sampled time series. This
scheme has been shown to perform well both on simulated
and experimental signals. Further work aims at using other
interpolation techniques and spectral criteria, such as flatness
of the PSD outside the band of interest.
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