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RESUME
La théorie asymptotique, qui est valable pour de grand nombre
d‘observations, décrit les résultats pratiques des estimateurs d'une
précision d‘ordre 7/N. Pour déduire |'espérance statistique d’un
estimateur il suffit de i’exprimer comme une fonction- des
covariances mesurées et ensuite de faire un développement de
Taylor de cette fonction. La précision de cette théorie n’est pas
améliorée en incorporant des termes d‘ordre supérieurs, comme
1/02 etc. Pour des descriptions plus précises, il faut utiliser les
concepts de «Finite Sample Theory».

INTRODUCTION

Recently we have presented [1,2] a survey of three ways in which
the estimation of an autoregressive (AR) model can theoretically
be approximated (see Survey below). The essential difference
between these levels is the way the residual variance, S2(p/, and
the squared error of prediction, PE(p), are described. The PE(p)
indicates the forecasting capacities of the model, while Sz(p} is
the fit to the available data that have been used to estimate the
model parameters. In AR order selection it is important to make a
clear distinction between these quantities, since the accuracy of
their descriptions may have a major influence on the selection
results. ‘

At first level the probability limits (Plim} [3] describe the
classical results of AR theory. In the Plim the joint limiting
distribution of the parameters equals the distribution of classical
linear regression theory. As a result AR estimation is treated as a
classical linear regression problem, when the sample size V is
sufficiently ‘large. The estimated parameters equal their
expectation, because the bias disappears for M>c and is therefore
not described at this level of approximation. Furthermore Sz(p)
equals the variance of the innovations &, that originally generated
the process. There is no difference between predictions and
residuals, since asymptotically their probability density functions
are equal. )

The second, asymptotical, level of approximation provides
more detailed theoretical descriptions of the estimates that are
accurate up to magnitude-order 7/N (see S4-the S. numbers refer
to formulae in the survey-). This degree of detail is minimally
required to distinguish the different behaviour of PE(p) (4,5} and
Sz(p). Furthermore it is possible to describe the bias in the
estimates. The approximations at this level are found by
considering parameters, residual variances and prediction errors as
non-linear transformations of the measured covariances. A Taylor
expansion of the resulting functions gives the desired descriptions

ABSTRACT

In autoregressive inference the asymptotic Large Sample Theory
is currently used to describe the behaviour of the sample
statistics. In investigating the limiting behaviour of sample
statistics, probability concepts and Taylor approximations are
important tools. To describe the statistical expectations with the
accuracy of order 7/, a Taylor expansion of the quantity, written
as" a function of estimated covariances, is all that is required.
Improvements to this accuracy of order 7/V are not found by
including higher order terms like /07, but require the totally
different concept provided by the Finite Sample Theory.

with an accuracy that includes all terms of order 7/NV in the
expectations of the stochastic functions. This paper demonstrates
that we are not aware of a mathematical sound derivation of
Taylor results with regression of the first theoretical level as
starting point. Only unmotivated approximations can lead to some
well-known formulae.

At the third level the way the estimation methods affect the
estimation results is taken into account. Simulations show the
important differences between the outcomes of estimation
methods. The first two levels of approximation to AR theory
contain no possibilities to adapt to the practical behaviour in finite
samples. Four methods [6] have been evaluated: the Yule-Walker
method (YW), the method of Burg (Burg), the Least Squares
method that minimizes both Forward and Backward residuals
(LSFB)} and the Least Squares method that minimizes forward
residuals only (LSF). Besides correcting for the estimation method,
multiplicative formulae are used at this level instead of the additive
asymptotical ones.

AR ESTIMATION

An autoregressive (AR) process of order K is defined as follows:

K
Xp+ Y alK) Xy =€, (1)

i=1
where €, is the generating innovation process, i.i.d. with zero
mean, variance 0,2 and finite fourth order moments. The
theoretical parameters are the entries a {K} of the parameter vector
afKj. The word process denotes the true underlying process of
order K, that need not be finite. To the data generated by the

ARI(K) process an AR model of order p can be fitted:

p
X+ Y 8PV Xn-i=Ep, (2)
i=1
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Survey: Three Levels of Approximation to Theory for AR{p} Model Estimation

Probability Limits

Large Sample Theory

Finite Sample Theory

ML theory asymptotical justifications practical data
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...................................................................................................................... o
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a=In{N) consistent
a=Iinin{N) minimal consistent
a=? any other variant

a=2 asympiotically efficient
a=? any other criterion

where the p elements 4;(p) constitute the parameter vector &p).

An AR model may be fitted to make a parametrical description
of the second order moments of the series. Another reason may
be that, faced with guestions concerning the future behaviour, a
prediction with a model is to be made.

The predictive capacity of a model is expressed by the
prediction error, PE(p); a quantity that should not be confused
with the residual variance, Sz(p}. The latter is a measure of the
model fit to the data based upon which the parameters have been
estimated and is defined in practice as:

S%p) = 87lp) Rex (p) dlp). 3)
ﬁxx(p) is the estimated pxp covariance matrix of the data x,,. The
way the entries of this matrix have been estimated depends
entirely on the estimation method used. With YW the covariance
matrix is hermitian and Toeplitz and furthermore can be shown to
be positive definite. With LSF the covariance matrix in (3) is
hermitian and positive semidefinite having M-p contributions to its
individual elements. In the LSFB method there are 2N-2p
contributions to each of the entries of the matrix, which is
hermitian and positive definite in this case. Formula {3) also covers
the method of Burg.

The value of Szlp/ decreases for each extra parameter that is
included in the model, whereas the forecasting capacities of a
model will only improve as long as the extra included parameter
is significant. The matrix R_, (without the hat!) describes the

exact covariance structure of the K-th order process that originally
generated the data. The PE(p/) is found by weighting the estimated
parameter vector &p) of the fitted model with the pxp submatrix
of R, as follows:

PE(p) = 47ip) R.,(p) &(p). (4)
The PE(p) of {4) is a quantity that can only be calculated in
simulation experiments, since for the calculation of R, the original
process must be known. In practice the PE(p) can only be
estimated, making use of a suitable order selection criterion, like
the asymptotical FPE(p) {S7) [7] or its finite sample counterpart
the FSCip/ (S8) (8]).

ELEMENTS OF LARGE SAMPLE THEORY

For the calculation of the bias terms in the parameters use is made
of the Yule-Walker equations:

Ryxp) 4(p) = 7p), (5)
where ﬁxx(p) denotes the doubly symmetric Toeplitz matrix with

as first row R, ... R, ; and A(p)is given by (R, ... Rp}T. The
Yule-Walker equations {5) will be used to express the parameters,
the residual variance and the prediction error in covariances. These
functions are evaluated with a Taylor expansion, yielding
expressions of the desired quantities in the second order moments
of the measured covariances, which are the fourth order moments
of the observations. Three types of bias can now be distinguished:
® Bias caused by subtraction of the estimated mean of the data.
® Triangular bias: The name refers to the bias in the
autocovariance estimates ,‘A?i, because it can be seen as if a
triangular window has been put over the estimated covariance
function. This form of bias appears only in the YW method and
arises when f?,- is divided by N instead of N-/; the expectation of
the covariance becomes (7-/NJR. It is the reason that the
Yule-Walker method will always produce results that differ from
any other estimation method.
® Taylor bias: A bias contribution, derivable by means of the
Taylor expansion, which is caused among others by the fact that
the expectation of two stochastic variables is not equal to the
quotient of their expectations, e.g.:
b= f?,' - E[ﬁ] - E[R,‘] _ COV[R(),R,'] N E[RI] Val'[Ro]
' /?0 ' E[éo] Ez[l?o] Eslﬁo]

This gives always a constant bias contribution of 7/NV for
parameters with an even index /, which is also present when the
true value of the parameters is zero.

Calculating, as an example, the bias in an AR(2) process the
result of the application of the Taylor expansion to the estimates
for parameters yields for the Taylor bias:

-1
El41(2)] = a4 —f/\;, Eld5(2)] ~ az—ga_l_zv___).

The result for the expectation of 4,/2) shows a constant bias



contribution of 7/V, which is also present when the parameters
are zero and is found for all 4/p) with even index /. If the mean of
the observations is subtracted, the bias increases with (7-a,)/N for
both parameters. The triangular bias is given by:

. . 2_ 2
bias ralay(201= 1121 ‘2"2””3"2”’},biasm[a*z(2n=_2_*’;‘a_2*L2_.
N7~ 177) N T(a7e 1)

The complete bias is found as the sum of the individual elements
mentioned above.

WITH PLIM TO TAYLOR RESULTS ?

Expressing Szlpl and PE(p) as functions of measured covariances
and applying a Taylor expansion leads to (S5) and (S6) in a quite
straightforward way. Other theoretical derivations have been
criticized by Bhansali [9] for their lack of rigorousness. The
remainder of this section illustrates the theoretical problems with
in some aspects successful derivations. It will be tried to find the
Taylor results by means of regression mathematics. The AR
process of equation (1) is therefore rewritten in a Least Squares
formulation, where the vector of observations x, with elements
x4 to x, is now given by:

x=-Xa + ¢. (6)

If a total of N+p observations is available, the left-hand side
vector x of dependent variables becomes fxp, Xy 7 ,.-- & x,)T. It
will be assumed that p is much less than N. The most convenient
description of the p columns of the matrix of regressors is fx,,
XpLD reeer xo;T for the first column 10 Xy, Xppg . - o Xgp/" fOF
the p-th column. Note that the same observations are used at first
as the dependent stochastic variables and afterwards as the
independent deterministic variables.

An estimate for the parameter vector & is:
& =-x7" xTx
= XX X"Xa - (XTX) T X,
a- (XTxr’ X.
Taking a close look at XTg it is seen with (1) and (6) that this
matrix product is built up of elementary products of the present

innovation &; with regressors consisting of previous observations
x;.7 10 x;,, such that the expectation of each individual product

i
equals zero.
Hence

EfXTe] =E[ X JE[e] =(00...07/,
with p zeros. The bias should follow from

Eldal =-E[ (XX XTe], (7)
but we are not aware of any mathematically sound derivation of
the bias of order 7/N that is based on this formula.

The residual variance becomes:

S2(p) = [x + X&)/ [x + X&/ /N
= [ - XXX IXT] [ - X(XTX7 I XTx) /N
= X[ - X(XTX I XT] @1 - X(XTX ' XTix / N
= [e" -a'XT] 1 - XIX"X)'X7] [e - Xa] / N
=ele /N - " XIXTX) ' XTe N
= ¢'e /N - [5-a]" X'X [4-a] /N
= &'s /N - trace{ X'X [4-a] [4-a]" } /N.

Il

So far only substitutions have been made, no approximations.
That will, however, be necessary in the computation of the
expectation of the second part of the equation. The trace is taken

from Np2 terms that each consist of a product of two
observations and two estimated parameters. The fourth order
moments can be written as products of second order moments if
the probability density function of the variables involved would be
normal. This is certainly not exactly true for estimated parameters:
they are at best asymptotically normal. A poorly motivated
method to obtain the desired answer is:

El SP(p) 1 % 02 - trace{ E[ XX JE[ (4-allé-a] } /N
= o2 - trace{ E[ X'X ] o2 E[ XX T /N
= 0o (1-p/N).

The number p follows as the trace of the product of a pxp matrix
with its inverse. Both splitting the expectation of fourth order
moments in products of second order moments and neglecting
those products that are not required in the desired answer have no
sufficient mathematical support. It will be extremely difficult to
combine mathematically a non-zero outcome for the bias in (7)
with the omission of similar terms that is required to obtain the
result above for the residual variance.

Since the prediction error can be seen as the fit of 4 to an
independent realization y of the same stochastic process, it can be
computed with more mathematical reliability because the
observations are independent of the estimated parameters (see
eqn. 4). The independent equivalents of x and X and the
innovations € are denoted as y, Y and n respectively in (6), with
dimension M instead of N. The prediction error for the model with
the same order as the generating process, computed from M
observations, becomes:

PE) = E{ [y + Y& Iy + Y&l } /M

= E{[n + Y(&dall [n + Yida]}/M
E{n"n+n"Y(5-a)+ (4-a) Y n+(4-a)YTV(4-a)] } / M
=02 + 0 + 0 + trace(El Y'Y/M JE[ (5-a)(é-a)” ]}
= 02 + trace(E[ XTX/N ] a2 E[ (X'X)" ]}
= 02 (1 + p/N ).

The fourth line uses the independence of n and the parameter a.
The next line uses the knowledge that X and Y come from a
process with the same statistical properties, with N and M rows.
In the final step we approximate the expectation of the inverse by
the inverse of the expectation, which was already done in the Plim
theory [3]. Only this last step lacks mathematical rigour.

Summarizing, we state that the theoretical treatment of the
prediction error PE(p) given above is sound and exact up to order
1/N. 1t provides the same answer as is found with Taylor. The
correct answer for the residual variance can only be found with
some mathematically questionable steps. It is not at all possible to
find an expression for the bias with this line of reasoning.
Summarizing, we could not find modifications of the existing
theory that describe the actual finite sample behaviour.

FINITE SAMPLES

Samples are finite when NV << and the quotient p/N is greater
than, say, 0.1. In finite samples the peculiarities of the method
used for the estimation of the parameters become important. The
influence of the method on the estimation results has been
evaluated by estimating AR parameters in a purely random
process. Simulations experiments have been carried out for a
number of observations taken between 2 and 100. Most resuits
have been obtained for normally distributed, zero mean
innovations €, but a uniform distribution of &, yields similar



216

results. These results are calibration curves for each estimation
method. These calibration curves can be described by a set of
fairly simple formulae: the v{i.} of (S9). Given the number of
observations N, they do not only describe the influence of the
estimation method, but also account for the dependence on the
model order 7 [10]. For all methods v(0,.)=1/N, when the
estimated mean of the series is subtracted, otherwise v(0,./= O.
A more detailed motivation for the formulae can be found in [8].

The coefficients vfi,./ correct for the actual number of degrees
of freedom that play a role in a given estimation method. A
theoretical understanding of the v(i,.) requires to realize that when
the value of the quotient /V differs substantially from zero, the
influence of / on the estimation results can no longer be neglected.
When N increases, while restricting to the same order /, the
quotient i/V may eventually become so small that v{i..) can be
approximated by 7/N, since i</N. N becomes simply so large that
numerically no difference between v{i.) and 7/N remains. This
reasoning is entirely different from the line of reasoning that leads
to the asymptotic 7/V, as a result of restricting the Taylor
expansion to the first order.

Another important modification in the Finite Sampie Theory is
the use of multiplicative formulae, like (S10) and {S11), instead of
the additive ones, like (§5) and (S6), in the asymptotic Large
Sample Theory. These formulae have been shown to yield better
descriptions [8]. It can be illustrated by two figures representing
the residual variance $2(p/ and the prediction error PE{p). In Figure
1 the asymptotic description of 82(,0} (SB) is compared to its finite
sample counterpart (S10). In Figure 2 the same is done for the
PEfp) of (SB) and {S11) respectively. The figures clearly show that
simulation results depend heavily on the estimation method that
is used. A finite sample description that does not take the
estimation method into account is therefore out of the question.
For S‘Z(p) and for PE(p), a single formula describes the different
results by using different v(i,./ for each estimation method. The
formulae apply to all AR processes above the process order K.

Asymptotical order selection criteria that have information
theoretical concepts as their basis, can together be described by
the G/Cfp,a) (S8). The Finite Sample Theory has been used to
rewrite these selection criteria into the FIC(p,a/ (S13) (see [8]].
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Figure 1: Sz(p} and E[Sz(p)/ in the Finite Sample Theory for
different estimates based on 20 AR(1) observations

CONCLUSIONS

In this paper a simple and coherent description of the asymptotical
Large Sample Theory has been presented. It has been indicated
how the statistical expectations of the estimates are found by
applying the first order Taylor expansion to the estimates after
they have been expressed in estimated covariances. More detailed
descriptions are required than the ones thus obtained, especially
when the sample sizes become relatively small in comparison with
the model order (p/V > 0.1}). These descriptions are not found by
the inclusion of higher order terms in the Taylor expansion.
Instead, a different representation has to be used. In the Finite
Sample Theory the finite sample variance coefficients provide the
descriptions and the necessary corrections for the observed
behaviour.
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Figure 2:PE(p} and E[PE(p)] in the Finite Sample Theory for
different estimates based on 20 AR(1) observations



