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RESUME

Segmenter un processus non stationnaire con-
siste & supposer qu’il est stationnaire par
morceaux et a détecter les instants de rup-
ture. On construit donc un processus de rup-
tures ~ue I'on munit d’une distribution a pri-
ori. Cela nous permet de proposer comme
solution l'estimateur du MAP. Un des intérét
majeur de cette méthode est sa capacité de
fournir, par le choix d’un & priori judicieux, la
meilleure solution possible, en accord avec le
niveau de résolution choisi par I'utilisateur. Cet
algorithme peut étre utilisé dans de nombreux
modéles paramétrigues ef non paramétriques. Tl
peut également étre utilisé pour le lissage par
fonctions spline lorsque le nombre et la position
des nceuds sont inconnus. Des simulations et
des applications sur des données réelles sont pro-
posées.

1 Modelisation

Let X = {Xi}i>o be a non-stationary real pro-
cess. We assume that X is piecewise station-
ary. Then, there exist instants {¢}r>o0 such that

(Xty415-- - X1y, ) 15 stationary for all k€ IN. The

problem consists in detecting the changes in the dis-
tribution of X, that is, in recovering the family {#;}
when a trajectory X;...X,, is observed.

First, we shall assume that the distribution-of the
process X depends on a parameter §. Thus, the
problem cousists now in detecting the changes of
6. The changes can affect the mean and the covari-
ance structure of the process, the transition proba-
bilities in a Markov random chain, the coeflicients
of a polyniomal trend, etc ...

When the detection delay (the time beetween the
change and its detection) needs to be well controled,
a sequential detection is performed. That means to
decide at time ¢ + 7 if a change bas occured at time
t. Most of the test statistics used by the detection
algorithms are built from the likelihood ratio or the
Kullback distance [1], [4], [5]-
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The goal of these procedures is to minimize the
probabilities of false alarms and omissions as well as
the delay 7. Of course, simultaneous optimization
of all these criteria is not possible: the smaller the
delay is the bigger the number of false alarms is.

We shall assume here that all the data is avail-
able and that there is no time restriction. Thus,
the criteria of good recovery are only related to the
detection errors. Instead of a sequential procedure
that does not use the information provided by the
future, we shall perform a global segmentation of
the process by detecting all the changes at the same
time.

To do this, let R = {R;};>¢ be the random pro-
cess defined by: N

(1)

1 if there exists k such that ¢ = #;

R; = .
0 otherwise

Then, R takes the value 1 at the change instants

and is zero beetween two changes. Detecting the in-

stants of changes consists in recovering the change

process R. When a particular realization z of the
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process X is observed, we can think in the M AP
(Maximum a Posteriori) estimate, maximizing the
a posteriort distributiou P(R/X = r,0) with re-
spect to K and 8. When this distribution possesses
a density g(r/x,8) with respect to a given measure,
the M AP estimate is given by:

(7,6) = Argmax g(r/xz,0) (2)
= Argmax h(x/r, 0)r(r). (3)

where h{z/r.8) is the deusity of the conditionnal
distribution P(X/R = r,0) aud #(r) is the prior
probability to have the configuration r.

Thus, for a given configuration of changes r, 8 is
the maximnm likelihood estimate of ¢ in each sta-
tionnary piece and will be denoted 6(r).

The first teriy A{x/7,8) depends directly on the
model while 7(7) must be arbitrarly defined. With
no additional information, we could think in defin-
ing K 3 a sequence of independent Bernoulll vari-
ables:

7(r) = Z(a)e‘aZi;l"‘ (4)

where Z(«) is a constant to make x a probability
measure.

Writing now ~(2/7,0) = cexp —1.(6,7), we have
to minimize the energy function

(o2
e

Up(r) = L(B(r),r) + > r. (:
i==1

The first terim l,(é(r),r) is related to the fit to the
observation = while the second term is related to the
number of changes. In fact, parameter a controls
the probabilities of detection errors. The smaller a
is, the bigger the prior probability of a change is and
the fewer the omissions are. On the other hand, the
bigger a is and the fewer the false alarms are.

For a process of length n, a change can occur at
the n — 1 first instants. Thus, R takes its values
in a 27 !l-dimensional space. Conventionally, we
shall set 7, = 1 such that the number of changes
N, = 3" r; is the same as the number of segments.
Let ™ be the configuration that minimizes U,(r).
Computation of the 2*~1 values of U,(r) is not gen-
erally tractable. Nevertheless, a simulated anneal-
ing procedure is very efficient to reach the solution
r* [3].

2 Examples

2.1 Changes in a polynomial trend

We consider the following process:
X = filk) + e (6)

for any #;_y < k < t; and where f; is a polynomial
function of degree d and ¢ an additive noise. If € is

a Gaussian white noise of variance o2, it is easy to
show that 7% is cotuputed by minimizing

e

Ny ty
Uy =20 >0 (Xe= filk))P+ 3N, (7)

[:1 k‘::lf[__! -}‘1

where 3 = 2002 and f is the estimate of f.

Changes in the mean of a process: We consider
here polynowms of degree 0 such that fi(k) = yy for
any ti—1 < k < t. Then, 7= is computed by mini-
mizing

Ny t;
Up(r) = > (Xe— ) 43N, (8)
[:1}&::{[*1—%1

Here, fiy is the empirical ean of X on the [th seg-
ment. The parameter § will define the resolution
level. We propose in Figure 1 different segmenta-
tions of a same process, obtained with different val-
ues of 4. If we want details, that is to detect small
changes of u, we must choose a swmall value for /3.
On the other hand, only the more important jumps
of the mean are detected with a bigger value of 3.

Now, if we want to detect changes in both the
mean and the variance of X', we must minimize the
function

N,
v

U(r) = }_J nLogd} + BN, (9)
=1

where 67 is the estimated variance of X on the [th
segment and ny its length.

Smoothing with spline functions: We shall mini-
mize the function Uy(r) under constraints, asking
f and its d — 1 first derivatives to be continuous.
In this case, our problem is equivalent to that of
smoothing a series X with spline functions, but
when the place and the number of the knots are
unknown.

We applied this algorithm to real data. The tra-
jectory of a point of a spine on a particular axis
during a flexion (in practice, we dispose of three
curves, corresponding to the three axis) is displayed.
This trajectory has been recorded by a camera and
is noisy. For its analysis, a smoothed version of
this trajectory is required. Furthermore, it can be
very important to detect changes in the curvature
of this trajectory, that is, in the second derivative
of the function f. The segmentation algorithm has
been used with polynomial splines of degree 2. The
smoothed curve is displayed in Figure 2 with the
original serie.

2.2 Changes in the transitions of a
Markov Random Chain

We consider here a Markov Random Chain X that
takes its values in a set 5. Then, the MAP estimate



of r is obtained by minimizing

Np ..
R . — - .. T N
Ug(r) = L 5_.1 711(2])[,0g~(—?) + aiN, (10)

I=1 (i j)eSxS (i)
where 74(2) is the number of times that X takes the
valie 7 in the [th segment and n;(ij) the number of
times that X passes from 7 to j in the [th segment.

2.3 Changes in a non-parametric distri-
bution

We consider now a sequence X of independent ran-
dom variables such that the distribution of X is
piecewise constant. We shall build a new statis-
tic from the empivical distribution of X. Let
{3,,L}0<,,L§_.x.[ be a sequence of real numbers such
that 75 < 21 < ... < zp. For each X, we de-
fine a new variable Y, that takes the value m when
Tt < Xg <z
The distribution of Y can be seen as the projected
d"iribution of X. Assuming that the changes that
afiect the distribution of X affect the projected dis-
tribution, we shall recover r by maximizing the pos-
terior distribution P(R/Y = y). Thus, it can be
shown that the solution is obtained by minhmizing

Nz
, (1):§ Z n/(mﬂog ( )-i—aNT (11)

=1 m=1

where ny(m) is the number of times that YV takes
the value m in the {th segment and n; the length of
Ith segment.

A simulation is shown in Figure 3-a. Indepen-
dent Gaussian variables were simulated in the first
and third segments while a uniform distribution was
used in the second segment. In this examples, the
changes were well detected by the algorithm and
a value of o beetween 8 and 12. The changes are
not significative enough to be detected with a value
of « greater than 12 while a value smaller than 8
produces false alarms.

Finally, Figure 3-b represents the heart-rate of a
new born baby. We want to identify heavy and light
sleep periods from this series. Instead of a para-
metric modelisation (that gives poor results here),
we look for changes in a non-parametric distribu-
tion. The changes detected by the algorithm with
200 < a < 400 are the vertical full lines. In this
example, external measurements (such as that of
the eye-lids’ movements) allow us to know the real
instant of changes, indicated with dashed-lines.

3 The optimization procedure

The simulated annealing algorithm is an iterative
procedure that defines a non-homogeneous Markov
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Chain {r(k)}s>o that converges to the optimal so-
lution r* with probability one:

e Choose an initial configuration r(0).

o At iteration k, choose a new configuration 7 as

a modification of r(k — 1). Let AU = Uy(7) —
Ug(r(k = 1)).
Set r(k) = 7 with plobabxhty oune if AU < 0

Al
and with probability €T elsewhere. Here
{T'(k)} is a decreasing sequence called temper-
ature.

When the total energy is a sum of local potentials,
Al is easy to compute for local modifications. In
our segmentation algorithm, the modifications con-
sist in adding a new change, in removing one, and
in translating one.

When we are looking for changes in a polyno-
mial trend, with some restrictions on the continuity
of the derivatives, this is no more true. In fact, a
local modification of the configuration, such as a
new change, will modify the complete set of spline
functions to satisfy the constraints. Nevertheless,
a modified version of the algorithm can be used in
such a case [3]. We shall define a new energy func-
tion at iteration k:

d Nyp—
Ta(r, k) = Ug(r) + Ak Z () - I(i)l(t,))l

=0

._a

where fl(])(tl) is the jth derivative of f at the ith
knot t;.

Here, {A(k)} is a sequence that tends to infinity
to ensure that the constraints are well satisfied for
k large enough.
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Fig.1 Detection of changes in the
mean of a random process with

different levels of resolution: a) B =
10b)B=5 c)P=2
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Fig.2 Smoothing with polynomial
splines.by detecting changes in the
second derivative. The original series
and the smoothed curve.
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Fig.3 Detection of changes in a
non-parametric distribution. - - - ; the
original changes. the estimated
changes.

a) Simulated data b) real data: the
heart-rate of a new-born baby.
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