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RESUME

Dans cet article nous abordons le probleme de la syntheése de
systémes optimaux pour la detection de signaux noyés dans
un bruit de Weibull, modelé comme un processus spherique-
ment invariant. Comme le critére uniformement le plus
puissant ne existe pas si la phase du signal est inconnue,
nous considérons le deux strategies de Neumann-Pearson
et du Rapport de Vraisemblance Generalisé pour eliminer
Pincertitude sur le signal. La comparaison, effectuée en ter-
mes de compléxité et de performances, montre que la strate-
gie du Rapport de Vraisemblance Generalisé est la plus ap-
propriée pour la detection de signaux inconnues.

1. INTRODUCTION

Optimum detection of radar signals in non-Gaussian noise
has received a great deal of attention in the literature so far:
in many applications, indeed, such as high-resolution radars
and low grazing angles, the actual disturbance amplitude
cannot be modeled as a Rayleighian random process. Ex-
tensive experimental campaigns, whose results are reported
in [1 + 4] for sea clutter, in [3 = 5] for land clutter and in
[5,6] for weather clutter, have demonstrated that two am-
plitude pdf’s (apdf’s) achieve the best fit to real data, the
Weibull and the K-distribution: nevertheless, an agreement

on which one is preferable has not been reached as yet. In

any case, experimental data, along with theoretical consid-
erations, indicates that non-Gaussian clutter arises as an ef-
fect of a composite scattering mechanism; moreover, its apdf
is invariant under Discrete Fourier Transformation (DFT)
(2,5, 6] thus suggesting that the clutter process is inherently
a compound-Gaussian one.

Much work has been directed toward the assessment of
conventional detectors in the presence of non-Gaussian dis-
turbance {7, 8] and the design of new detection schemes in K-
distributed clutter [9]. Conventional processors turn out to
suffer marked performance degradation under non-Gaussian
clutter, while proper optimisation may yield satisfactory de-
tection performance, as demonstrated in [9].

The problem of optimum detection in Weibull clutter is
discussed in [10]: a new model for coherent Weibull clutter,
based on a generalisation to the complex case of the well-
known Wiener approach, is introduced and subsequently
applied to the design and the assessment of new detection
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schemes. Some criticism might be raised in that a true opti-
mality cannot be claimed on the proposed schemes. Further,
the clutter model is not compatible with the cited invariance
of Weibull apdf under DFT, nor does it properly describe
the composite scattering mechanism.

As a consequence, the problem of optimised detection in
compound-Gaussian noise with Weibull apdf is still open
and is the object of this paper. Precisely, in Section 2 we
briefly outline the compound-Gaussian model for Weibull
clutter; in Section 3, after ascertaining that no Uniformly
Most Powerful (UMP) test exists, we thoroughly discuss
the possible approaches to design optimised detectors for
partially known radar signals. Section 4 is devoted to a
comparison between the different strategies in terms of both
the achievable performance and complexity and robustness
with respect to changing operating conditions.

2. CLUTTER MODEL

As pointed out in the introduction, one of the most cred-
ited non-Rayleigh apdf is the Weibull one, namely

fa(r) = abrt~lexp (—arb) a,b>0 (1)

where b and a are the shape and the scale parameter, respec-
tively, related to the common variance of the quadrature
components as (1/2)a=2/*T(1 + 2/b) = ¢?. The Rayleigh
law is subsumed in the family (1) for b = 2, while the mem-
bers corresponding to b < 2 exhibit heavier tails than the
Rayleigh, thus accounting for clutter spikyness.

r>0,
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In keeping with experimental data, we assume that the co-
herent clutter echo is a compound-Gaussian process, namely
that it can be regarded as the product of a complex Gaussian
process times a non-negative process, the so-called spiky
component [11]. Moreover, the average decorrelation time
of such a component is typically much longer than the dwell
time, implying that the modulating process degenerates into
arandom variate. As a consequence, the complex row vector
n, whose entries are samples from the baseband equivalent
of the clutter process, is a Spherically Invariant Random
Vector (SIRV) [11] and can be written as

n=sg @)

where g is a complex Gaussian vector and s is the modulating
variate, with pdf f(s).

Notice that the adopted model ensures the reported in-
variance of the clutter apdf under Moving Target Indicator
(MTI) processing and DFT since, due to representation (2),
it is closed with respect to linear transformations.

Remarkably, this model allows a complete specification
of the clutter process even in the case of correlated obser-
vations. More precisely, the N—dimensional pdf of a zero-
mean complex SIRV n with Weibull apdf can be cast as

fn(x)=BA (| xIm) 3)

where B is a suitable normalisation factor, || x ||jf is the
norm of x defined by the definite-positive matrix M~1, with
M the autocovariance matrix of n and h(-) is defined as

+o0 22 N ,
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Notice that for uncorrelated observations || x |5 reduces
to the usual Euclidean norm: however, the multivariate pdf
(3) does not reduce to the product of the marginal pdf’s
of the clutter samples, implying that uncorrelation is not
equivalent to independence.

3. OPTIMISED DETECTION IN WEIBULL CLUTTER

The problem of detecting signals embedded in clutter can
be stated in terms of the following hypotheses test

HO .

{ Hl .

where r, p and n are N—dimensional, complex vectors
whose components are samples from the baseband equiv-
alent of the received signal, of the transmitted signal and
of the clutter, respectively, while o = Ae?? is a complex
gain accounting for the channel effect and the target Radar
Cross Section (RCS). The quoted closure property of SIRV’s
allows one to apply the whitening approach to detect signals
in correlated disturbance. Therefore, we can limit ourselves
to the case of uncorrelated noise (i.e., the vector n possesses

r—=n
r—ap-+n

(6)

identity covariance matrix) with the understanding that, if
the clutter is correlated, p represents the useful signal at
the output of the whitening filter [9].

At first we consider the case of perfectly known signal:
the worth of such a model is twofold, namely to ascertain
the existence of a UMP test and to establish an upper bound
for the achievable performance in the presence of target with
unknown parameters. In this case the solution to the detec-
tion problem is straightforward and amounts to implement-
ing the Likelihood Ratio Test (LRT):

h(l|x = 4ei®p ) 2
Mmoo 5 @

The block diagram of the optimum receiver implementing
the test {7) is depicted in figure la: it coincides with the
conventional one, but for the presence of a Zero-Memory
Non-Linearity (ZMNL), aimed at warping the norm of the
received echo and its distance from the useful signal.

Since the Left Hand Side (LHS) of equation (7) is easily
seen not to admit a sufficient statistic independent of the
parameters of the useful signal, then no UMP test exists.

Consequently, design of optimised processors in Weibull
clutter requires a suitable strategy in order to handle the
a-priori uncertainty as to the useful signal. In principle, two
different criteria can be adopted. The former, the Neymann-
Pearson criterion, which is by far the most common, requires
working out a suitable statistical model for the wanted tar-
get echo, namely assigning a fluctuation law for the complex
gain a; accordingly, the LRT is:

IEEETYRS
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T (8)

where the bar denotes the expectation over the random pa-
rameter «. This obviously leads to an optimum detector,
mn the sense that its detection performance is unbeatable
by that of any other detector operating under the same
signal-parameters fluctuation instances. Unfortunately, in
non-Gaussian environment, the Neymann-Pearson strategy
usually leads to a detector that cannot be implemented, but
only approximated. Moreover its structure depends on the
fluctuation law of the signal parameters, and its performance
may suffer remarkable degradation from mismatching be-
tween the assumed and the actual target fluctuation law.
A different optimisation strategy relies on the so-called
Generalised Likelihood Ratio Test (GLRT). This strategy
amounts to considering « as an unknown complex parame-
ter rather than as a random variable. Accordingly, its Max-
imum Likelihood (ML) estimate is substituted into the LRT
in place of . This is tantamount to implementing the test:

(e~ A0%p [)
(Y R ©
namely to maximizing the likelihood ratio with respect to «
and comparing such a maximum to a suitable threshold. It
1s worth noticing here that this test is not optimum, namely
that it does not achieve maximum power for a given false



alarm rate. On the other hand, the relevant properties of
the ML estimates and, in particular, their consistency ensure
that for increasingly high number of the integrated samples
the performance of the GLRT should approach the perfect
measurement bound, i.e. the performance of the optimum
detector for completely known target signal. Moreover, the
GLRT is inherently a distribution-free test, namely it leads
to a detector whose structure does not depend on the target
model being in force (the detector is canonical).

The previous discussion is intended to show that it is
not possible to decide a-priori which strategy is preferable,
even if the GLRT approach sounds somewhat appealing for
radar applications. A final decision, however, cannot but be
made a-posteriori, namely after investigating whether the
loss suffered by the GLRT with respect to the NP detector
is negligible or not. To this end, we considered the situation
where the target phase only is either unknown or fluctuating,
whilst its amplitude is a-priori known: this model is often
referred to as steady target in the literature.

4. DETECTION OF STEADY TARGETS

The detection of a steady target, according to the
Neymann-Pearson criterion, amounts to implementing the
LRT (8), with the understanding that the bar denotes now
the expectation over the random phase §, assumed uni-
formly distributed in (0,27). Unfortunately, the integral
in the numerator of the LHS of (8) cannot be expressed in
a closed form. Thus a practical implementation of this test
requires the quantization of the phase, which is allowed to
take on the values 8 = 27k/M, k= 0,..., M — 1 with one
and the same probability 1/M. The corresponding detector
implements the test:
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and is depicted in figure 1b. Such a receiver is asymp-
totically optimum since, as M — oo, its performance ap-
proaches that of the optimum test (8), and will be referred
to as Discrete NP (DNP) detector in the following, as it is
the optimum NP detector once the phase is modelled as a
discrete variate. Notice that this receiver can be regarded
as a set of M parallel NP detectors for known signal, the
k—th being matched to the phase 8.

The GLRT for detecting a steady target in Weibull clut-
ter, instead, implements the test (9), where now the max-
imization is over the phase #. Since the function (4) is a
decreasing function for non negative arguments, the LHS of
(9) is maximum as the squared norm
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is minimum, with r; the component of the received vector
orthogonal to the direction of the transmitted signal. As
a consequence, the ML estimate of the signal phase, is [9]
§ = Lr - p, namely is the phase at the output of a filter

LUV

matched to the useful signal. Thus the GLRT is
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The corresponding receiving structure is depicted in fig-
ure lc and coincides with the receiver for perfectly known
signal, but for the presence of the signal estimator.
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Figure 1: Optimised detectors for coherent pulse trains em-
bedded in correlated Weibull clutter: LRT detector for sig-
nals with known parameters (a), DNP detector for steady
targets (b), and ML detector for signals with unknown de-
terministic phase (c). :

A direct comparison between these schemes highlights
that the ML detector exhibits a much simpler structure than
the NP detector, whose complexity linearly increases with
the number M of parallel channels: on the other hand, M
is to be high enough in order to ensure an acceptable loss
with respect to the test (8). Moreover, for at least one
value of the clutter shape parameter, i.e. as b = 2 and the
clutter exhibits Rayleigh apdf, the NP and the ML detec-
tor coincide with the classical envelope detector, while the
DNP achieves near-optimum performance only if M is high
enough (in particular, M > 8): this fact is clearly demon-
strated in figure 2, where the common performance of the
NP and the ML detector subject to Gaussian disturbance
are contrasted with those of several DNP detectors.

In order to investigate the behaviour of the above detec-
tors under non-Rayleigh clutter, we refer to figure 3, where
the performance of the NP detector is shown, along with
that of the ML and of the DNP for several M’s: for compar-
ison purposes, the perfect measurement bound is reported
also. This figure, as well as the previous one, was generated
assuming the target phase uniformly distributed in (0, 27),
N = 4 integrated pulses and Probability of false alarm (Py,)
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equal to 10™%: it is worth noticing here, however, that the
actual phase of the input useful signal does not affect the
performance of either the NP or the ML detector; for the
DNP detector, instead, such a parameter turns out to be
inherently influential.
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Figure 2: Performance of NP (ML, —) and DNP (M =
2,4,8,16, - ~ —) detectors for N = 4 integrated pulses,

Pjo =104 and b = 2 (SNR= 4JBI).
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Figure 3: Perfect measurement bound (— - —) and perfor-

marnce of NP ( ), DNP (- -, M = 2,4,8,16), and ML
(-rennn ) detectors for N = 4 integrated pulses, Psa = 1074

and b =1 (SNR= 4B

More generally, in regard to the ML receiver, it can be
shown that, since the test statistic depends on the norm of
the received signal and on the distance between the received
and the estimated useful signal, its performance depends
on the energy || Ap [|? of the wanted target echo, but is
otherwise independent of the transmitted waveform and of
the phase 4.

Figure 3 highlights that the NP detector is very tightly

upperbounded by the perfect measurement bound and
lowerbounded by the ML receiver, implying that the
GLRT strategy entails a negligible loss with respect to
the maximum-power test. Additionally, in order that the
parallel-channels implementation (10) do not result into sig-
nificant detection loss, M should be in the order of 16. Com-
paring figure 2 with figure 3 suggests that the spikier the
clutter apdf, the higher the minimum number of parallel
channels ensuring substantial equivalence between the DNP
and the NP detector.

Overall, we can conclude that resorting to the GLRT
strategy proves advantageous, since it allows one to trade
a small additional loss for reduced complexity as well as ro-
bustness with respect to the target phase. As a consequence,
such an approach suggests itself also when designing opti-
mised detectors for signals with unknown amplitude and
phase.
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