QUATORZIEME COLLOQUE GRETSI - JUAN-LES-PINS - DU 13 AU 16 SEPTEMBRE 1993

ARRAY DETECTION OF WEAK SIGNALS WITH
DRIFTING PHASE IN NON-GAUSSIAN NOISE

Luciano IZZO Luigi PAURA Mario TANDA

Universita di Napoli “Federico II”, Dipartimento di Ingegneria Elettronica
via Claudio 21, I-80125 Napoli, Italy

RESUME

On considére ici le probléme de la détection, au moyen d’un
réseau de capteurs, d’un signal sinusoidal faible affecté de
fluctuations de phase et noyé dans un bruit non gaussien.
Le modele utilisé pour les fluctuations de phase est le pro-
cessus du mouvement brownien. On considére tout d’abord
le détecteur localement optimal, puis deux détecteurs sous-
optimaux. Les performances des détecteurs sont évaluées et
comparées au moyen de la déflexion.

1. INTRODUCTION

The problem of detecting a weak sirusoidal acoustic sig-
nal with drifting phase has been considered in [1] with refer-
ence to the case of additive Gaussian noise. The performance
of the quadratic detector, which is locally optimum, has been
compared with those of two suboptimum structures of easier
implementation. The first one is the standard noncoherent
detector, which is optimum for detecting a sinusoidal sig-
nal with a random but constant phase (i.e., in the absence
of phase drift) embedded in Gaussian noise. The second
one, referred to as the mth—order noncoherent detector [2],
trades off coherent and noncoherent integration of the re-
ceived waveform to assure satisfactory performances in the
presence of significant phase drifts.

Since in underwater acoustics the statistical characteris-
tics of the background noise significantly deviate from the
Gaussian ones [3], the conventional systems (i.e., those op-
timized against Gaussian noise) can exhibit a drastic per-
formance degradation. Therefore, in weak-signal conditions,
locally optimum detection structures for non-Gaussian noise
have to be considered. Moreover, to reduce the long collect
time, which is required to assure reliable detection, an array
of sensors is commonly adopted [4,5].

The present paper deals with the problem of detecting,
by an array of sensors, a weak sinusoidal signal with drifting
phase in the presence of additive non-Gaussian noise. The
phase drift of the signal of interest at each array element is
modeled as a Brownian motion process. In our observation
model, the phase drifts are assumed to be mutually inde-
pendent and, moreover, the noise samples are assumed to be
spatially and temporally independent.

The locally optimum array detector for the problem at
hand is first considered. Then, two suboptimum detection
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structures are examined. The first one is the locally optimum
array detection structure synthesized to detect a sinusoidal
signal with a random but constant phase in the presence
of non-Gaussian noise. The second one is a version of the
mth—order noncoherent detector (considered in [1,2]), which
is modified to account for the non-Gaussian behavior of the
background noise.

The performances of the considered detectors are com-
pared in terms of deflection, which is a useful performance
measure in weak-signal conditions. In particular, the or-
der m of the mth—order noncoherent detector is selected by
maximizing the deflection of the decision statistic.

2. DETECTION STRUCTURES

The detection problem under consideration can be repre-
sented by the hypothesis test

Ho: yp(d)

Hl H yp(i)

= np(i)

(1)

Ap cos(27mvot + 0,(3) + ¢p) + 1y (3)

where y,(7) and n,(¢) (p = 1,2,..,M; i=1,2,..,N)
denote the received signal and the noise (respectively) at the
ith instant on the pth element of a receiving array of M
elements. The noise samples n,(z) are assumed to be inde-
pendent and identically distributed random variables (RV’s)
with a first-order probability density function (PDF) f(-),
zero mean, and unit variance. The signal of interest at the
input of the pth array element has amplitude A4,, a known
frequency v, and a phase 6,(i)+¢, where ¢, is a random ini-
tial phase, uniformly distributed in the interval [0, 27}, and
{6,(7)} is the phase drift process on the pth channel, which
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is modeled here as a Brownian motion process, i.e.,

6,(1) = Y wp(k) 2)

where {w,(k)} is a zero-mean white Gaussian process with
variance a;. All of the phase drift processes, the RV’s ¢,,
and the noise processes are statistically independent with
each other.

Under the previous assumptions the signal s,(7)
Ap cos(2mvoi + 0,(1) + ¢,) is a wide-sense stationary process
with autocorrelation function
2
—j;—pp;’ﬂ cos(2mvog) (3)
where p, A exp(—o2/2). Note that A2/2 is the signal-to-
noise ratio (SNR) at the input of the pth array element,
which will be denoted by Z,. Moreover, p, is the phase drift
parameter, which assumes a unity value in the absence of
phase drift.

The sufficient statistic of the locally optimum detector
(LOD) for the problem stated in (1) can be written as [6]

K,,(q) =

TEOD = ZZ Z i3l cos(2mvo(i — 7))
9% (g (3 (5)) + 9(3p(2))éi5] (4)
where g(y) A f (v)/ f(y), the dot denotes the derivative, and

6;; is the Kronecker delta.

To reduce the implementation difficulties of the LOD, it
is interesting to resort to suboptimum detectors. One such
detector is the LOD for the problem stated in (1) when the
phase drifts are absent. Its detection statistic is obtained by
setting p, = 1in (4). Since in the particular case of Gaussian
noise (g(y) = —y) such a detection statistic becomes that of
the standard noncoherent detector, the detector under con-
sideration will be referred to as the noncoherent detector
(NCD).

The NCD is expected to perform poorly when the sig-
nal phases drift significantly over the observation interval.
Then, a modified version of such a detector, referred to as
the mth-order noncoherent detector (mNCD), can be intro-
duced. The N samples received at each array element are
splitted into m segments of K samples and, then, the follow-
ing decision statistic is formed:

TnNCD Z Zp i
r K -2
Z 9(% (i + (5 — V)K)) cos(2mvo(i + (j — 1) K))
- K - -2
+ Zy(yp(z +(j = 1)K)) sin(2mv0(i + (j — 1)K ))

3 alaplt G- 1)K))} (5)
i=1

A suitable value of m can be selected by optimizing some
performance measure. In the following the deflection crite-
rion is adopted. We note that in the limiting case of the

heaviest phase-drift conditions (i.e., pp = 0 for any p) the
LOD reduces to the mNCD of order m = N and, hence, in
this case the choice of m is obvious.

3. PERFORMANCE ASSESSMENT

Since the analytical evaluation of the conditional PDF’s of
the decision variables under both hypotheses is an intractable
problem, the detector performances are stated here in terms
of deflection.

The deflection of a decision statistic T' is defined by

[E1(T) — Eo(T)]*

D(T) & = imam)

(6)

where Eo(+), E1(+), and VARy(:) denote the expectations

_conditioned to Hp and Hj, and the variance conditioned to

Hy of the decision variable T.
The detection statistic that maximizes the deflection is
the likelihood ratio, say A, whose deflection is given by [7]

D(A) = VARy(A) ("N

provided that VARG(A) < co. Such a result can be usefully
exploited to evaluate the deflection of the LOD operating
in weak-signal conditions. In fact, for weak signals, A ~
1+ TLO0D /2 and, then, it results that

D(A) =~ D(TE9P) ~ %VARO(TLOD) =

M M
1
=4 S VAR(TOP) ~ Y D(TFOP) (8)
=1 r=1

where TPLOD denotes the locally optimum detection statis-
tic for the case of a single receiving sensor (M = 1) and
the assumption of statistically independent noises has been
accounted for. Therefore, from (4) and (8) it follows that

M

N
LOD 2
D(THP) = Z;Zp {2E2[g*()IS(I, pp)
+V ARolg*(y) + §(y)1} (9)
where
~ (;_lal
S(N,pp) A (1 - -—J%,—) pf,"“ cos?{2mvoq) (10)
q=1-N
q#0

As regards the deflection of the mth-order noncoherent
detector, it can be shown that, under weak-signal conditions,
one has

mK

D(TmNCD) — 1

M 2
{Z Z; [2E51a* (W)IS(K, v/pp) + V ARl () + ()] }

=1 -
[2B2[g%(4)S(K, 1) + VARo[g*(v) + 4] D 22

(11)
Finally, the deflection of the NCD is obtained by putting
m =1, and hence K = N, in (11).
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To assess and compare the performances (in terms of de-
flection) of the considered detectors, the generalized Gaus-
sian family of distributions is assumed in the following for
the first-order statistical characterization of the noise:

fl) = 2r@/e)]  n(e)eexp{=[n(c) | ¥ I°}  (12)

where s
n(e) A [N(3/e)/r(1/e)] (13)
I'(-) is the gamma function, c is a positive parameter gov-

erning the rate of the PDF decay (¢ = 1 for Laplacian noise,
¢ = 2 for Gaussian noise, ¢ ~ 8 for nearly uniform noise).

Such a PDF family is quite flexible, encompassing a wide -

class of PDF’s and, moreover, models the characteristics of
a variety of man-made and natural noise sources [5,8].

Figures la-lc report the deflection normalized to the
square of the SNR at the input of the detector, say
Do(T*9P), for the LOD in the case of a single receiving sen-
sor, by assuming (as in the following) a sample size N = 30.
The normalized deflection is plotted as a function of the fre-
quency v for several values of the drift parameter p and
for ¢ = 1.6 (Fig.1a), ¢ = 2 (Fig.1b), and ¢ = 8 (Fig.1lc).
It is shown that DO(TLOD ) decreases as p decreases from
p = 1 (absence of phase drift) to p = 0 (white signal case).
Moreover, the performance loss (with respect to the case of
absence of drift) increases less and less as p approaches zero.
As regards the deflection as a function of the frequency vy,
the curves exhibit two peaks for the limiting values 1o = 0
and vg = 0.5, except for the case p = 0 where Do(TL0P)
is independent of vy (see also (9) and (10)). Finally, the
comparison among the figures shows that for nearly uniform
noise (¢ = 8) the deflection assumes the highest values and,
moreover, the performance loss due to the drifting phase is
the least severe.

Note that, accounting for (8), the results reported in Figs.
la-1c can also be utilized to evaluate the deflection when a
sensor array is considered. In particular, when the phase
drift parameters p, are all equal with each other, the curves
of Figs. la-1c provide directly D(TX°P) normalized to the
summation of the squares of the SNR’s. Moreover, D(T£9P)
turns out to be proportional to M when also the SNR’s are
all equal with each other.

The comparison between the LOD and NCD performances
can be easily made on the assumption that the phase drift
parameters p, are all equal with each other, say p. In fact, in
this case the ratio D(T¥¢P)/D(T%°P) does not depend on
both the number of sensors and the SNR’s Z, (see (9) and
(11)). Figures 2a and 2b present the loss (in decibels) LY$?,
in terms of deflection of the NCD with respect to the LOD,
as a function of the frequency v for some values of p and for
¢ = 1.6 (Fig.2a) and ¢ = 8 (Fig.2b). Note that in the absence
of drift there is no performance loss since the NCD is a lo-
cally optimum detector. As expected, the loss increases as p
decreases, i.e., as the phase drifts become more severe. More-
over, large performance degradations (even about 10dB) can
occur. The loss is less severe for nearly uniform noise.

To obtain performances closer to those of the LOD, one
can resort to the mth-order noncoherent detector by exploit-
ing the deflection optimality criterion to select a suitable
value of the order m. By assuming again p, = p for any p,
the value of m that maximizes the deflection D(T™NCP),
say m"®, is independent of the number of sensors and SNR’s
Zyp. Table 1 reports the value m* obtained in correspondence

of some pairs (p, ¢) for vy = 0.2. As expected, m* = N = 30
for p = 0 and m* = 1 for p = 1, for any value of the noise
shape parameter c.

Figures 3a and 3b present the loss {in decibels)
in terms of deflection of the m* NCD with respect to the
LOD as a function of v for some values of p and for ¢ = 1.6
(Fig.3a) and ¢ = 8 (Fig.3b). Let us note that, according
to the previous observation, there is no loss for p = 0 and
p = 1 for any value of vy and ¢. The quite irregular behavior
of the loss as a function of vy is not surprising since the
value of m* depends on vy and, then, any curve does not
refer to a comparison between two detectors, but rather to
the comparison between the class of m* NCD and the LOD.
The results show that the performance degradation is less
than 2dB, regardless of the amount of phase drifts and the
value of the noise shape parameter c.

m*NCD
LdB

4. CONCLUSIONS

The problem of detecting by an array of sensors a weak
sinusoidal signal with drifting phase in non-Gaussian noise
is considered. It is shown that the mth-order noncoherent
detector performs nearly as well as the locally optimum de-
tector when the performance measure is the deflection and
the order m is selected according to the maximization of this
performance measure.

REFERENCES

[1] V.V. Veeravalli and H.V. Poor, “Quadratic detection of
signals with drifting phase,” J.Acoust. Soc. Am., vol.
89, pp. 811-819, Feb. 1991.

[2] G.J. Foschini, L.J. Greenstein, and G. Vannucci, “Non-
coherent detection of coherent lightwave signals cor-
rupted by phase noise,” IEEE Trans. Commun., vol.
COM-36, pp. 306-314, March 1988.

[3] P.L. Brockett, M. Hinich, and G.R. Wilson, “Non-linear
and non-Gaussian ocean noise,” J.Acoust. Soc. Am.,
vol. 82, pp. 1386-1394, Oct. 1987.

[4] S.A. Kassam, Signal Detection in Non-Gaussian Noise.
New York: Springer-Verlag, 1988.

[5] L. Izzo, L.Paura, and M. Tanda,“Optimum array detec-
tion of weak signals in spatially correlated non-Gaussian
noise,” J.Acoust. Soc. Am., vol. 92, pp. 1966-1972, Oct.
1992.

[6] J.J. Sheehy, “Optimum detection of signals in non-
Gaussian noise,” J. Acoust. Soc. Am., vol. 63, pp.
81-90, Jan. 1978.

[7] B. Picinbono and P. Duvaut,“Detection and contrast,”
in Stochastic Processes in Underwater Acoustics, C.
Baker, Ed. New York: Springer-Verlag, 1986, pp. 181-
203.

[8] P.A. Nielsen and J.B. Thomas,“A comparison of para-
metric and non-parametric detector performance levels
in underwater noise,” J. Acoust. Soc. Am., vol. 87, pp.
225-238, Jan. 1990.

This work was supported in part by the Ministero
dell’Universitd e della Ricerca Scientifica e Tecnologica.



