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RESUME

Les relations entrée/sortie entre les statistiques cycliques
d’ordre supérieur 4 deux sont dérivées pour le cas d’un
systéme linéaire variant en temps presque périodiquement et
a plusieures entrées et sorties, lorsque les signaux aux entrées
sont cyclostationnaires. Deux exemples d’application sont
présentés: I'identification d’un systéme linéaire invariant en
temps par des données bruitées et I’évaluation de statis-
tiques cycliques d’ordre supérieur 4 deux pour quelques sig-
naux couramment rencontrés en communication.

1. Introduction

In the last two decades, the theory of second-order cy-
clostationarity (SOCS) of time-series has been developed
[1]. For such kind of signals, there exists a quadratic time-
invariant transformation that converts into spectral lines the
hidden periodicities due to modulation, sampling, and mul-
tiplexing operations. The properties of SOCS have played
an important role in the development of new signal process-
ing techniques for such purposes as detection, parameter es-
timation, and waveform estraction, especially in severe noise
and interference environments [2-6].

There is a class of signals, however, whose degree of SOCS
is low or zero, whereas the degree of higher-order cyclosta-
tionarity (HOCS) is substantial, that is, spectral lines with
significant power are generated by an Nth-order homoge-
neous nonlinear time-invariant transformation with N > 2.

This class includes pulse-amplitude-modulated (PAM) sig—'

nals with less than 50% excess bandwidth, M-ary phase-
shift-keyed (PSK) signals with M > 4, and severely ban-
dlimited digital signals. For such signals, the theory of
HOCS, which has been very recently introduced [7-10], pro-
vides a potentially useful tool for signal processing applica-
tions.

In the present paper, after a brief introduction (Sec-
tion 2) on the joint HOCS, the input/output relations for
a linear almost-periodically time-variant (LAPTV) multi-
input multioutput (MIMO) system excited by time-series
exhibiting joint HOCS are derived. The relations are ex-
pressed in terms of cyclic temporal cross-moment func-
tions, cyclic spectral cross-moment functions, cyclic tempo-
ral cross-cumulant functions, and cyclic cross-polyspectra.
The special case of MIMO linear time-invariant (LTI) sys-
tems is, then, considered. Moreover, for a single-input
single-output (SISO) LTI system the generalization of the
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cyclic Wiener system identification formula [1] from second-
order to higher-order cyclic spectra is stated.
Section 4 two examples of application of the relations stated
in Section 3 are presented.

The analysis framework used throughout the paper is that
of the fraction-of-time probability for time-series exhibiting
cyclostationarity [11], which obviates the concept of cyclo-
ergodicity and, then, avoids some difficulties related to the
estimation of the HOCS parameters [9].

Finallv, in
Hinally,

2. Joint higher-order cyclostationarity

Let us consider the column vector x(t) e [Z1(2), -\
zn(t)]T whose components are N not necessarily distinct
complex-valued time-series, The N time-series exhibit joint
cyclostationarity of order N with cycle frequency a # 0 if
at least one of the Nth-order cyclic temporal cross-moment
functions (CTCMF’s)

N
R;(T)N é <Lx(‘t,T)Ne—j2rat> = (Hm‘(_*)i(t_{_n)e—jzwat)
$=1

(1)
is not identically zero. In (1), 7 = (71 ooy TN T, (-) denotes
infinite time averaging, and (%); represents optional conju-
gation of the ith factor #;(-) of the Nth-order lag product
waveform Ly (¢, 7)n-

The magnitude and phase of the function RZ(7)n are
the amplitude and phase of the sine-wave component with
frequency « contained in the lag product. In the fraction-
of-time probability context for time-series that exhibit cy-
clostationarity,

A

(Lx(t, T)N>{a} = Z(Lx(u’ T)Ne—jzrau)ejzﬂ-at
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= Y Ry(r)ye? (2)

a

is called the Nth-oder temporal cross-moment function
(TCMF), and will be denoted by Rx(¢,7)n. In (2), the
sums range over all Nth-order cycle frequencies «, and (-){}
stands for the almost-periodic-component extraction opera-
tor [11].

The N-dimensional Fourier transform of the CTCMF,
which is called the Nth-order cyclic spectral cross-moment
function (CSCMF), can be written as [8]

SH(F)né(F11 - a), (3)

where f = [fl,...,fN]T, 1 is the vector [1,...,1]T, 8(+)
is the Dirac delta function, and prime denotes the oper-

Sz (Fin =

ator that transforms the vector u = [ug, ..., ux]T into
7

u' 2 [41, ...y ur—1]T. The function Sy (f')n, referred to as
the reduced-dimension CSCMF (RD-CSCMF), can be ex-
pressed as the (N — 1)-dimensional Fourier transform of

By(7)v = RYUTIN lrw=o, (4)

which is the reduced-dimension CTCMF (RD CTCMF)

Let us note that both SZ(f)y and Sy(f')n in gen-
eral contain products of impulses and, then, are not well-
behaved functions. This stems from the fact that the func-
tion Ry(7')x is not in general absolutely integrable [9].
However, a well-behaved function in the spectral-frequency
domain can be introduced starting from the Nth-order tem-
poral cross-cumulant function (TCCF)

Cx(t, T)N

N

log, (exp{j Y wizs(t+7) 1) o0
k=1

aN
Owy - Owpn

= Z (_1)p~1(p_ 1)!Hqui(t’T“‘)|#"l ! (5)
) =1

where w 2 [w1, ..., wy]T, P is the set of distinct partitions of
{1, ..., N}, each constituted by the subsets {y; : i = 1,...,p},
|i| is the number of elements in u;, and x,, is the |-
dimensional vector whose components are those of x having
indices in p;. In fact, taking the N-dimensional Fourier
transform of the coefficient of the Fourier series expansion
of the almost-periodic function (5)

Cl(r)n & (Cx(t, T)ne 2P, (6)

which is referred to as the Nth-order cyclic temporal cross-
cumulant function (CTCCF), one obtains the Nth-order

cyclic spectral cross-cumulant function (CSCCF) Pf(_f)N
It can be written as [8]

PA(f)v = Po(f)n6(f11 - B), (7)

where the Nth-order cyclic cross-polyspectrum (CCP)

?ﬁ(f’)N is the (N — 1)-dimensional Fourier transform of

CTh(r)n & CB(T)N lrn=o, (8)

which is the reduced-dimension CTCCF (RD-CTCCF). The
cyclic cross-polyspectrum is a well-behaved function under
the mild conditions that the time-series z;(¢) (¢ =1,...,N)

are asymptotically independent (so that ai(‘r')N — 0 as
|7'| — oo) and, moreover, there exists an € > 0 such that
[Ca(r)n = of|7/|7¥+17¢) as |7] — co.

Finally, we note that in Section 3, for analytical simplic-
ity, the input/output relations for LAPTYV systems are first
derived in terms of cyclic moments and, then, in terms of
cyclic cumulants, by exploiting the relationship between mo-
ments and cumulants.

3. MIMO LAPTYV input/output relations

Let us consider an N-input M-output LAPTV system
and express the elements of its impulse response matrix by
the Fourier series expansion

=3 b (Fm)e 2, (9)
where m = 1,...,M, n = 1,...,, N, and the sum is over all
harmonics of the alimost-periodic function Anm (2 + T, t).

The CTCMF of order M at the cycle frequency o of the
M outputs ¥, (¢) can be obtained by (1) and (9):

M
A —j2ra
= (Hym(t“‘Tm)e i2 t)

m=1

N
= Z Z o Z I:R;’i—‘:ﬁilx—i;'—l/wm (*)u

P15 tM=1 P14y YMip

hnm. (t + T, t)

Ry(T)m

.efZ”(”lix"1+"‘+"MiMfM)] ® hVn'l (Tl) TR hVMiM (TM)>

™ (10)

where @ denotes convolution with respect to the variable

7; and the equality has been obtained interchanging the or-
der of integration and summation operations. Note that
optional conjugations in the expression of the lag product
waveform have been omitted here without loss of generality.

The reduced-dimension version ﬁ;('r’) m of RY(T)nr is
obtained setting 7y = 0. Moreover, accounting for (3),
the input/output relation in terms of RD-CSCMF’s can be
written as

Sy(Fw= 3 D))

[EPRUR SVE=3 18 2% VMipg

_:'J_l:,-f.i,lz_i;_VM‘M(fl - [Vlin ey VM —Tip. 1]T)M
Hypgo (0= £'7 HIHMmﬂn (11)
m=1

where H,__ (fm) is the Fourler transform of h,_ (7).
Equations (10) and (11) can be specialized to MIMO LTI

systems for which the elements of the impulse response ma-

trix are given by hmn (t+7m,t) = hma(7m) and, hence, from

(9) one has
(12)

= 0 otherwise. In

By (Tm) = B (Tm Y6u,n s

where 6, = 1 for v, = 0 and 6
particular, (11) becomes

Vmn
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Hirg (= £'1) ] Huni (fin)- (13)
m=1
An interesting special class of MIMO linear systems is
that of N-SISO LTI systems. In such a case the impulse
response matrix is diagonal, that is,

hmn('rm) = hn(Tn)‘Smna
Then, from (13) it follows that

m,n=1,...,N. (14)

N-1

Sy ) = S3(FwHula— F) [[ Halfa).  (15)

Such a relation leads to a useful LTI system identifica-
tion formula. In fact, by letting in (15) Hn(-) = 1 for

n = 2,..,N and assuming the input N-dimensional vec-
tor x(t) £ [2(t), ..., 2 ()] T 2 [2(t), xo(t)T]T, it results
that e
S I3
Hi(ry) = Sty (16)
Sx(f)n

This formula is the generalization to higher-order cyclo-
stationary input signals of the system identification for-
mula stated in [1] with reference to input signals exhibiting
second-order cyclostationarity.

Let us consider now the special case of MIMO LAPTV
systems characterized by the input/output relation

y(t) = W(t)a(t) (17)

In such a case Auyn(t + Tmyt) = W (¢)6(7m), where the
elements Wy (t) of the matrix W () can be expressed as

)= w,,, et (18)

Vmn

Wit

Therefore, by substituting A, (7m) = s, 6(7m ) into (10),
one obtains that

i DTS DRI

R;(T)M = Wonti g
iyeiM=L vy VMing
. R:u:/n:z“-‘ —UMiy (T) eJ""(”hx T4 +uM.M7M) (19)
which leads to
N
E;(fl)Mz Z Z Z Wy, *** Wopgs,,

t1yeniM=1 V14
SO—V1i) — e —UMi
S:c.-l,.f.,lz,-M ™ (fl -
Moreover, if one assumes that W (t) is a diagonal matrix,
that is, an N-SISO system is considered, from (20) it follows
that

Sy(f)w = Z Z“’"l'

UMiy

[Vlin'":VM—liM—x]T)M° (20)

—a Vy—r—VUN
wVN z3,. I,IN (f/—VI)N’

(21)
where the w,;’s have been replaced by the w,,’s.
As regards the CTCCF of the M outputs of a MIMO
LAPTYV system, from (5) and (6), accounting for (10) and
observing that the subsets u; are disjoint, it follows that

f1yeiM=1 Vigy VMiyg

Cy(m)m
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[C'a"1 ’Vh’lm‘M T (T)M 6'7 ZT(VI‘IT’-'*' +VMtM "'M)]
® hun‘; (Tl) R hVM;M (7M). (22)
Ty ™

Let us note that the input/output relations in terms of
CTCMF’s and CTCCF’s are the same (compare (22) with
(10)). Therefore, the input/output relations in terms of
CSCCF’s, RD-CTCCF’s, and CCP’s can be immediately
stated by considering the relations in terms of CSCMF’s,
RD-CTCMF’s, and RD-CSCMF’s, respectively. Finally, a
LTI system identification formula, analogous to (16), can be
stated in terms of CCP’s:

'yxxo(f )

Hy(f1) = —P‘m

(23)

4. Applications

We consider here two examples of application of the rela-
tions stated in Section 3. The first one considers the problem
of the LTI system identification based on input and output
noisy measurements; the second one deals with the evalu-
ation of the RD-CSCMF’s for some signals of interest in
communications.

4.1 LTI system identification

Let us consider a LTI system with impulse response h(t)
whose noisy input and output measurements v(t) and z(¢)

ATe

o) = =(t)+n() (24)
o) = y(t)+mi), (25)

where z(t) is the exciting signal, y(t) = z(t) ® k(t), and n(t)
and m(t), which are possibly correlated with each other,
model noise and interference and are assumed to be inde-
pendent (in the fraction-of-time probability sense) of z(t).
By assuming that there exists a cycle frequency 8 such

that the CCP Po(f')y be not identically zero, from (24)
and (25) it follows that

Pruo(F) _ Py ()30 + Poomy ()
p = 5 — , (26)
Py F)n + PalF)w
where the N-dimensional vectors n(t) = 2 [n(t), ey {t)]T 2

[n(t), no(t) 1T and v() £ [o(2),..., v&)]T £ [w(t), vo(t)TIT
have been defined. Thus, if one assumes that

Po(f)v = P (F)w = 0, (27)

accounting for (23), it results that
PorIhn _ Pox(f)
Pelf v Palf)n

Consequently, the LTI system can be identified by estimat-

ing the CCP’s P".o(f’)N and ﬁe(f’)N involved in (28).
The system identification problem described by (24) and
(25) can also be solved by the formula

= H(f1). (28)

— §§xo(fl)N _ 3.fzxvc,(.f,)l\:’
vH(fz)— S - (29)
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which follows from (16) on the assumptions that z(t) ex-
hibits Nth-order cyclostationarity with cycle frequency o
and, moreover,

SIHF =0, v#0;

(fl)l—_ ( )k_gfnno(f,)k =0, N. (31)

It is worthwhile to underline that no problem arises from

assumption (30) since the cyclostationarity of lowest order

exhibited by z(¢) is usually exploited to avoid unnecessary

computational complexity. Moreover, assumption (31) on
noise and interfering signals is more restrictive than (27).

E=1,.,N-1, (30)

k=1,...,

4.2 Evaluation of higher-order cyclic spectra

Let us consider N time-series z4, (¢) each of which is ex-
pressed as a product of an impulse train and a time-series,
that is,

1>

t) Jf 5(t — kT),

kx=—o0

m=1,..,N. (32)

Their joint characterization in terms of RD-CSCMF’s can
be derived substituting v, = 7, /T (With 7, any integer
number) and w,,, = 1/T;, into (21). It results that

N
1 —a-rTf,
Sy = (H 7 )Zszl,f.,w(f'—r'of:)m (33)
m=1"" r
where f, = [l/Tl,...,l/TN]T, r 2 [r1, .0y 7n]T, and
o denotes the Hadamard matrix product, ie., »' o f] =
[Tl/T]_,...,TN_l/TN_l]T.
The RD-CSCMF of N PAM signals
A =2
LPAM,, (t) = Z wm(kTm)pm(t - kTm)
k=—o0
= x5, (t)®pn(t), m=1,.., N, (34)

according to (15), can be written as

=

SprM(f)N*—PN a_‘f,

HP fm x5 ')N’ (35)

where E;B(f’)N is given by (3
Fourier transform of p,(t).

Finally, let us consider N quadrature-carrier amplitude-
modulation (QAM) time-series

3) and Pp,(f) denotes the

zqamMm,, (1) 2 em(t) cos(27 fermt + Gm)

- Sm(t) Sin(27"fcmt + ¢1n), (36)
These QAM signals can be considered as the out-
puts of a MIMO LAPTV system excited by x(t) £

m=1,...,N.

[21(2), ..., o (£)] T, where
Tom-1(t) = cml(t), (37)
‘7321n(t) = $m (t) (38)

The input/output relationship of the system is given by (17),
where the nonzero elements of the N x 2N matrix W (t) are
given by

(39)
(40)

C°5(27rfcmt + ¢m)’
—sin(27 femt + ¢m ).

wm,Zm—l(t) =

Win,2m (1)

Therefore, from (20) it follows that

N .
N
Z Z (H equ;m[¢m+(im~2m+1)«/z])

qui;=%1  guiy=tl \m=1
S (f oo, Ly (A1)
where g, iy 2 [QIi“...,quN]T and f, 2 [fc1,---,ch]T.
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