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RESUME

Cet article introduit une nouvelle transformation de
Fourier discréte de précision élevée dénommée Ia
transformation de Fourier discréte non-uniforme de type
Legendre (en anglais: “Legendre nonuniform discrete
Fourier transform, LNDFT). En supposant que les signaux
sont réels, ayant une durée finie et aussi une bande de
fréquences limitée, le modéle présent est base sur I'estimation
de 'ensemble’ des échantillons non-uniforment prélevés de la
transformée de Fourier discréte conformément aux racines du
polynéme de Legendre (en définissant la LNDFT), dans le
but d'étre consistant avec une séquence donnée des
échantillons uniformément prélevés dans le temps. Nous
avons déduit une formule analytique pour linversion de la
matrice complexe correspondante de type Van der Monde. A
partir de la LNDFT, nous pouvons appliquer un interpolation
utilisant les polynomes de Legendre dans le domaine de
fréquence, basé sur la transformation de Legendre discréte (en
anglais: discrete Legendre transform, DLT), pour obtenir
une estimation spectrale précise et efficiente.

1. INTRODUCTION

There have been several approaches to define a
nonuniform discrete Fourier transform [3],{4]. This paper is
based on the two methods of interpolation recently proposed
by Neagoe [1], [2]. In [2] & nonuniform sampling theorem for
time-limited signals is given, to the aim of high. accuracy
preserving the integral signal characteristics (such as energy
and Fourier transform);, it consists of the cascade of
nonuniform sampling in the time-domain according to
Legendre polynomial roots, followed by the discrete
- Legendre transform (DLT) applied on the vector of
nonuniformly taken samples. In [1] the author presents an
improved interpolation method, by considering the usual
uniform sampling in the time domain and the Legendre
nonuniformly taken samples in the frequency domain; it leads
to a high accuracy interpolation formula that minimises the
instantaneous etror.

ABSTRACT

This paper introduces a new high accuracy discrete
Fourier transform called Legendre nonuniform discrete
Fourier transform (LNDFT). Assuming real-valued signals
that are both time-limited and also band-limited, the present
model is based on the estimation of the set of nonuniformly
taken samples of the Fourier transform according to Legendre
polynomial roots (defining the new LNDFT) in order to be
consistent with the given sequence of uniform time samples.
An analytical formula for inversion of the corresponding
complex Van der Monde matrix is deduced. Starting from the
LNDFT, we can apply a Legendre polynomial interpolation in
the frequency domain, based on the discrete Legendre
transform (DLT), to perform an efficient and accurate
spectral estimation.

This paper is an extension of a segment of [1]; it also
uses some results of [2]. Assuming real-valued signals that are
both time-limited and also band-limited, the present model is
based on the estimation of the Legendre nonuniformly taken
samples of the Fourier transform (defining the Legendre
nonuniform discrete Fourier tramsform = LNDFT) in
order to be consistent with the given sequence of uniform
time samples. It requires to solve a linear Van der Monde
system. An analytical formula for the inversion of a complex
Van der Monde matrix is deduced, being useful not only for
exact computation of the LNDFT, but also for computing a
general nonuniform discrete Fourier transform (NDFET) as
well as for other important signal processing problems.
Starting from the LNDFT, we use a Legendre polynomial
interpolation in the frequency domain, based on the discrete
Legendre transform (DLT) in order to perform an efficient
spectral estimation.
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2. THE LEGENDRE NONUNIFORM DISCRETE
FOURIER TRANSFORM

Assume we have a real-valued signal, g(t),
considered to be both time-limited and also band-limited
{g : [0,n]>R, n € N, g eL*(0,n), G(f)=0, for | f|>W, when
G(f) is the Fourier transform of g(t), so that:

g(t= 3’ G(f) e2mift dt, 2.1)

i?= -1} and also assume that the vector of uniformly taken
signal samples in the time domain: g = (g~ g())j~0,1,.0 =
(g0 £ --- 2T is given. An optimum interpolation formula is
deduced in [1], minimising the maximum instantaneous error.
It is based on the evaluation of the signal g(t) from its inverse
Fourier transform (relation (2.1.)), according to the Gauss
quadrature rule [1]. It leads to’

8.0=D (WG, 22)
k=0
where
imrx 5
wk=e . L(r=2W;i" =-1) 2.3)
and
G =W, G(f) ., (E=Wx) 2.4)

Ay being the Cristophell coefficients; x, are the roots of the
Legendre polynomial of order n+1; G(fy) are the Legendre
nonuniformly taken frequency samples of the Fourler
transform. The condition of convergence for interpolation is
r < 4/(m €) = 0.468 (see[1]).

We define the Legendre-nonuniform discrete

Fourier transform (ILNDFT) as:

G,= (Glfik=0,1,..n0 2.5)
or its normalised form

Gp= (=W MGEdh—0,,.0 ~ (26)

The LNDEFT coefficients are estimated from a linear
system of N=n+1 equations in order to be consistent with the
given set of uniformly taken time samples g (see relation (2.2.)
fort=j)

<1
gD=D.wiG,  ,(=0,1,..0)
k=0

The above set of equations defines the inverse
Legendre Nopuniform discrete Fourier transform (Inverse
LNDFT), that may be equivalently expressed in the matrix
form

(2.7)

=PG,;, , 2.8)
where P is the complex (n+1)x(n+1) Van der Monde matrix
| S R |

p=["0 Vo Vel (2.9)
wy Wy .. Wy
and where wy, is given by relation (2.3.).
To deduce the Direct LNDFT we have to solve the
above linear Van der Monde system given by (2.8.) and (2.9.).
Since then, we can define the Direct LNDFT by the relation

Gy=8g ,

S=p-!, .11)
An analytical exact formula for the inversion of a
complex Van der Monde matrix is deduced in the Appendix 1.
The variant G, of LNDFT can be obtained from G,

(2.10.)
where

as

Ga=(Gli=0,1,..0 = (VWMIGWi=0,1,...0 (2.12)

3. SPECTRAL ESTIMATION BASED ON LNDFT

Based on the LNDFT and on the results given in [2],
we propose the present model of efficient spectral estimation,
having the following stages:

o Starting from the vector g=(g())-0,1,....a , deduce
the direct LNDFT expressed by the vector G, (relations
(2.10.), (2.11) and (2.12.)).

o Apply the Legendre polynomial interpolation in the
frequency domain, according to the formula

n
f
G(f= 3. BxLK(—)
k=0 w
where L, (x), xe[-1,1] is the normalized Legendre polynomial
of order k and where the vector B=(By B,...B,)! is given by:
B=¥DDLIG, (3.2)

, G.1)

In relation (3.2), ¥PPLT s the (n+1)x(n+1) matrix
characterising the direct discrete Legendre transform
introduced by Neagoe[2].
o The power spectrum density can be defined as
S| ag=10logy lG(HI2 . (33)

4. COMPUTER SIMULATION RESULTS

An example of spectral estimation according to the
proposed model is given in Fig.1. Using N=16 samples only,
we obtain a good quality spectral estimation (applying a
sinusoidal waveform of frequency f, respectively the sum of
two sinusoidal signals having the frequencies f; and f;). The
accuracy of estimating the location of the maximum can be
evaluated from Fig.1. as well as from Table 1.

TABLE 1
ACCURACY OF FREQUENCY ESTIMATION
(case of a single sinusoidal waveform; N= n+1=16)

Input frequency | Estimated freql\lency Relative error
(£) (f)
(location of maximum)
0.100 0.103 3%
0.140 0.139 0.64%
0.200 0.199 0.50%
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Fig.1. Spectral estimation using LNDFT and DLT
(N=n+1=16; £,=0.14; £,=0.2)

For f; =0.1, the interval [0,15] corresponding to
N=n+1=16 samples (the sampling period is T = 1 ) contains 3
cycles, implying a better accuracy of frequency estimation.

At the same time, the experiments must fulfil the
convergence condition r =2W< 4/(ne)= 0.468,; it is equivalent
to W< 0.234 (since then, fi< 0.234).

5. CONCLUDING REMARKS

1. This paper introduces a new model of discrete
signal representation called the Legendre nonuniform discrete
Fourier transform (LNDFT).

2. It is characterised by a high accuracy
approximation of the correspondence between the time
domain and the frequency domain (approximation of the
inverse Fourier transform by the Gauss quadrature rule [1] ).

3. The interpolation formula in the frequency domain
is based on the fact that the set of LNDFT elements (vector
G,) and the coefficients of the corresponding Legendre
polynomial finite series (vector B) are essentially a discrete
Legendre transform pair.

(V]

4. The proposed method provides a powerful tool for
accurate and efficient frequency representation of signals.

5. An analytical formula for exact inversion of a
complex Van der Monde matrix is deduced in the Appendix 1.
It can be useful not only for LNDFT computation, but also
for exact computation of a general nenuniferm discrete
Fourier transform (NDFT) as well as for other important
signal processing problems.
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APPENDIX 1
INVERSION OF THE VAN DER MONDE
MATRIX

Consider a Van der Monde matrix of order n over €
having the form

1 1 1
a a a
A=l I 2 n a, cC (A1)
n-1 n-1 n-1
a a a
1 2 n
Denote
det A=V (a,..2) . (A2)
For 1 < k £ n, consider the determinant
1 1 .. 1
4 8, .. 48

Viay..a)=[akt a¥! L &'} - (A3)

aktl gkl pkvl
ay  ay a,

For k=0, we define
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a; a, a,
2 2. 2

a a . a

Q 1 2 . ]
Vay...,a,) ‘ _ (A4)

. >
n n ]

a; a; 4y H

and for k=n, we define
1 1 .. i

a a .. a
Viay,.a)=] ' ? alo. (A5)

o1 L S 3
a; a, a

Obviously,
Va(@y,...,ay) = Vy(@y,....8,) o (A6)

Consider, the Van der Monde determinant of order
(mt1), 1 e,

1 1 .. 1 1
a, a, .. 8, z
Volapas,. 2,22l a3 . a2 22|, (A7)
aj a} .. a) 2"
where z is a complex variable.
We can easily prove that
n
Vnﬂ(al,az,...,an,z)=V,,(aI,a2,...,an)-n(z~ai) . (A8)
i=1
. On the other sid.e, if we develop V_,,(a,.a,,...,2,,2)
after its last column, we yield

Vp+1(81,82,...,80,2)=V 2 (ay,...,8) 2 -V 1(ay, . a0 )z 1+ .
CHEDPVO@, e (A9)

Consider the symmetrical polynomials of degree k,
0 <k < n, having as variables a,...,a,, namely

oo(ay,.,an)=1

01(ay,....ap)=ar+...+ay

05(81,...,85)=8 a8 83+, . tajagtasast.. Fagagt.. +a,. 8,
O3(ay,...,an)~a18283 218084 +... Fanp8n 18y

Taking into account that

[ %)= o,(ay...0)2% 0y(8y,....2)2" 4. + (-1 o ay,... ),

i=1
(A.11)
relations (A_8), (A.9), (A.10) and (A.11) lead to
vnk(al""’an) = Vn(al""’an) Gn'k (8'1""7811)
(O<k<n)

(A12)

Denote by Ay the algebraic complement of the

element a}',l placed on the i-th row and on the j-th column of
matrix A. We have

A=) |

= (-1 Vi @y 2201 08y) (A.13)
From relation (A.12),obtain

Ag=(-1l"Vp.a(a1,...,8§-1,8i+1,--, 80021, 8- 1,&+1,...,n) »

(A14)
We vield
Ay — 1y a,?‘i(al,...,aj_l,aﬁl,...,an) . (AIS)
Vn(al,..,a.n) -1 n
H(ﬁ iax) H(ak"a D
k=1 k=j+)
Since then, the inverse matrix is
" an _(al,.‘.,a., l,a,ﬂ,...,a ) T
- i - - n
A" Yo

[Ta@.-a) I] @ -a) .
(A.16)



