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RESUME

Les bancs de filtres permettant d’obtenir un échantillonna-
ge rationnel ont été assez peu étudiés par rapport aux bancs
de filtres & échantillonnage entier. C’est en particulier le cas
des bancs de deux bandes dont on a pu récemment montrer
que P'itération engendre des fonctions limites comme dans
le cas dyadique [1]. Comme conséquence, peu d’algorithmes
de synthése de filtres existent. C’est le but de cet article
que de décrire un algorithme de syntheése de filtres “sans
pertes” a la fois trés simple & mettre en ceuvre et qui en
méme temps permet d’obtenir des résultats excellents en
termes d’atténuation. On péut tester I'efficacité de cet al-
gorithme dans le cas dyadique.

1. INTRODUCTION

Two-band iterated filter banks (dyadic case) have become
very attractive for coding purposes [6] because they decom-
pose a signal into lower resolution subsignals. This allows
to “see” the larger scale structures of the input signal as
well as the smaller scale ones [9]. The notion of scale as op-
posed to frequency as it appears in the short-time Fourier
transform, is in particular better adapted to the study of
most natural signals and to the study of transients in non-
stationary signals. However, for applications such as speech
processing, an octave-band analysis does not seem sufficient
to distinguish between the perceptual features of the signal.
Usually, it is admitted that a third-of-octave band analysis
is necessary for this purpose. This can be achieved with
rational filter banks (RFB).

These filter banks are very similar to the dyadic ones,
with the extension that in order to achieve rational rate
changes, each band is built with an up-sampler as well as
with a down-sampler. The figure 2 shows a global analysis-
synthesis scheme for such schemes. RFBs in their general
form have been studied in [2,3] and the connection between
iterated RFBs with wavelet transforms have been studied
in [1].

So far, very few design examples have been proposed in
the rational case. In [2,3] the analogy between p-band uni-
form filter banks and p/q rational filter banks is exploited.
Assuming paraunitarity (or losslessness) for the polyphase
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matrix of the system, they decompose it in paraunitary ele-
ments of degree 1, using the method in [8]. Then they use a
non-linear minimisation procedure in order to find the “op-
timum” parameters of the decomposition. This approach is
indeed very heavy since a huge number of local minima can
trap the algorithm in non optimal solutions: this requires
running the algorithm on different starting points.

[4,5] take another approach, which deliberately relaxes
the perfect reconstruction hypothesis. Instead, the recon-
struction error is minimized together with other design pa-
rameters in a two step iterative process. The first one
minimizes a quadratic cost function of the synthesis pa-
rameters; the second one uses a conjugate gradient method
to modify the analysis parameters so that the value of this
functional decreases. At the limit of their iterative process,
the filters can show a very low reconstruction error and a
good frequency behaviour. An advantage of their method
is that it naturally designs biothonormal filter banks, as
opposed to orthonormal, or lossless filter banks. However,
it is interesting to design lossless filter banks for many rea-
sons. First, they constitute an orthonormal transform for
which statistical results are simpler than in the biorthonor-
mal case. Second, an efficient and robust implementation
can be realized using the decomposition [8]. Third, only
two parameters are sufficient to define an optimal polyno-
mial, namely its degree and its transition band, since after
minimizing the attenuation, the bandpass ripples are also
automatically minimized.
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© In order to present our design method, we first state
the reconstruction equations and show that it is sufficient
to concentrate on the analysis low-pass polynomial G(z) of
the two-band scheme of figure 2. In this figure, we assume
p = ¢+ 1 and the paraunitary conditions

g;(z) = G(z2) (1)
HG) = H) @

Then we shall describe the algorithm as an iterative pro-
cedure. It is important to keep in mind that the iterations
are not proven to converge. However, for all the cases we
tested, convergence has always been reached. In that case,
we prove that the limit polynomial verifies the reconstruc-
tions relations. Moreover, it has been experimentally ob-
served that this limit solution is totally insensitive to the
initiating point. This is indeed very surprising, if we re-
member that the minimization problem has a huge number
of minima. In fact, in the dyadic case, the algorithm selects
the maximum phase polynomial.

Finally, we show some design examples, and compare
with the results in the dyadic case.

2. PROBLEM FORMULATION

The analysis-reconstruction problem shown in figure 2 can
be put under matricial form M(z"l)M(z) Id [1]. Thanks
to this equation, one checks that in the case p— ¢ = 1 the
knowledge of G and G is sufficient to know H and H up to
the multiplication by a constant and a delay. In the loss-
less case, a simple method to find the filter H is to develop
the ¢ x p matrix G(z) corresponding to the filter G into
paraunitary-simple elements [8]

G(Z) = G0P1(Z)..,PN(Z) (3)
where each factor P; is of the form
Pi(z) =Id + (z — V)uu” (4)

for some unitary vector u. The ¢ x p matrix Gy is then
orthonormalized to give & p x p matrix (GF, HF)™ whose
last line will provide the filter H after multiplication by the
paraunitary elements P;.

Asin the dyadic case, an “energetic” relation (for which
the proof will not be given here) can be written in the case
where p—g¢=1

—ZIG( B 4 H(eH )2 = p (5)
Ic 0

This assumes of course that the filters have real coefficients.
A typical tolerance scheme for G is shown in figure 1. Due
to (5), the transition band on the lowpass filter G auto-
matically imposes a transition width on H, also shown in
figure 1, which is ¢ times wider than the lowpass transition
band. It is thus not necessary to bother anymore with the
highpass filter H. Let

L
G(z) =) gaz" (6)
k=0

2.1. RECONSTRUCTION EQUATIONS

The reconstruction relations for the lowpass filters in fig-
ure 2 can be deduced from the biorthogonality equations [1].
One finds

Z gnp+kq+a§kq+a = 6n
¥ ()

for s = 0..¢ — 1 and all integer n

where §,, is the Kronecker symbol. An important fact is to
be noticed: if the filter G is lossless the system of equations
becomes twice redundant and it is sufficient to consider
(7) for n > 0. This redundancy will be the basis of our
algorithm.

2.2. COST FUNCTION

We fix the transition bandwidth to év, and search for the
solution of the following nonlinear minimization problem

0.5
min G(e¥**™) 2 dv
& /,w,,' =) ®)

under the constraints (7)

This problem can be further developed and leads to a set
of non-decoupled quadratic equations which have a huge
number of solutions, corresponding to local minima. It is
thus impractical to find the solution to our problem by this
method.

3. DESCRIPTION OF THE ALGORITHM

Instead of solving the exact system of equations, we can
think of solving a simpler minimization problem which up-
dates a former polynomial to a polynomial with better
characteristics.

The method consists in repeating the following two op-
erations

1. given the polynomial G(*) at step s, find the polyno-
mial T’ which reaches

0.5
min/ IT(e®™)|? dv (9)
r '51;"1"6”'
under the constraints

ng(m;)+kq+a7kq+8 = én

p (10)

for s =0..¢ — 1 and all integer n > 0
Notice that only kalf the reconstruction equations (7;
are written. This in particular implies that I, G(*
are not a couple of biorthonormal filters.

2. let
I +G®

(4+1) =
¢ )

(11)
These operations involve only the search for the solution
of a linear system, since now (10) are linear constraints,
as opposed to the quadratic constraints (7). This is very



easy to implement. But iterating this, does not ensure that
convergence can be achieved, that is to say
- lim |GC+D ~GW =0

—+00
We however noticed the following facts

e convergence was always reached whatever the param-
eters I and v, up to the precision of the computer

o there was no dependance on the initialization for the
limit polynomial

o the limit polynomial has always shown a very satis-
factory frequency selectivity

If we define the reconstruction error €(*) to be

) = sup sup |6n — Eg,(,?+kq+}91(::)+z| (12)
n =U..¢— k

it does not cancel in general, but we have lim,_. €(*) = 0.

4. DESIGN EXAMPLES

Due to the weak theoretical part of this algorithm, its prin-
cipal interest is that it provides good filters. Due to lack
of space, we give here only two convergence examples. The
first one is a comparison between the well known dyadic
case (Smith-Barnwell solution {7]) and the result given by
the algorithm. The second one is the design of a lowpass
filter of length 75 (highpass.is of length 19) for p/q = 5/4
which corresponds to a third of octave scale factor.

Case 1: p/q = 2/1, length(G) = 32, év, = 0.02

Convergence is reached in 72 steps. In figure 3 the result
of the algorithm is plotted together with the result of the
corresponding Smith-Barnwell solution [7]. Only the first
ripple is less attenuated (by approximately 2 or 3 dB) that
the Chebyshev optimum solution. This indicates that the
result provided by the algorithm is of good quality in the
classical two-band case. A detailed insight into the coeffi-
cient values shows moreover that the algorithm approaches
the maximum phase solution of the Chebyshev optimiza-
tion problem.

Case 2: p/q = 5/4, length(G) = 75, év, = 0.025

After 70 iterations, the reconstruction error was less than
10~1%, The frequency response of the resulting filters are
shown in figure 4. The coefficients of the lowpass and high-
pass filters are given in table4. Note that even if the filter
G is very long, the filter H has only 19 taps. This is a
particularity of lossless rational filter banks. To achieve
good selectivity for the highpass filter, one has classically
to consider longer highpass filters. But these longer fil-
ters imply much longer lowpass filters (typically the length
of the lowpass filter is ¢ times the length of the highpass
filter), which are expensive to design. In figure 5, the re-
construction error is plotted against the iteration step. It
shows an exponential decrease by a factor of approximately
0.7. This exponential decrease has generally been observed
for arbitrary (p,q), while the factor itself did not change
much.

-

5. CONCLUSION

We have presented a new algorithm for filter design in two-,
band rational filter banks. The originality of the algorithm
is that only half of the reconstruction equations are con-
sidered, a reduction which is valid only when the limit is
achieved. In itself the algorithm is an iterative process,
which is not proven to converge. Fortunately, it experi-
mentally converges in a geometrical way, and provides good
results.
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Figure 1: Tolerance schemes for the filters G and H
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Figure 2: Analysis-synthesis two-band filter bank
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Figure 3: Algorithm vs Smith-Barnwell solution, case 1
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Figure 5: Reconstruction error against the iteration step, case 2
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Figure 4: Lowpass and highpass filters, case 2

tap | lowpass filter | highpass filter | tap | lowpass filter
c'd continued
[ 0.0204938 -0.00176362 § 38 0.030226
1 0.0689152 -0.00639207 | 39 0.0402374
2 0.15796 0.0144022 § 40 0.0317526
3 0.29095 -0.00586808 § 41 0.013439
4 0.457521 -0.031126 § 42 | -0.00681927
5 0.631603 0.0821973 | 43 -0.020554
6 0.774969 -0.101844 § 44 -0.0219565
7 0.846461 0.0400278 | 45 -0.0147118
8 0.815451 0.116426 § 46 | -0.00330769
9 0.672149 -0.320402 | 47 0.00743787
10 0.436831 0.484863 | 48 0.0112182
11 0.155372 -0.53563 49 0.0102635
12 -0.108776 0.462957 | 50 0.00488268
13 -0.297992 -0.313559 § 51| -0.00162501
14 -0.373426 0.159974 § 521 -0.00405953
15 -0.320415 -0.0578887 § 53 | -0.00524713
16 -0.193347 00126476 | 54 | -0.00348715
17 -0.0149395 -0.00144908 | 55| 0.000186182
18 0.138864 6.49091e-05 | 58 | 0.000886917
19 0.224126 57 0.00189878
20 0.221552 58 0.0017861
21 0.146318 59 | -8.33974e-06
22 0.0284911 60 | -0.000101617
23 -0.0815031 61 | -0.000414841
24 -0.145578 62 | -0.000646335
25 -0.148819 83 0
26 -0.0979612 64 | 4.55177e-06
27 -0.0179024 65 | 4.75296¢-05
28 0.0561649 66 0.00014121
29 0.0983992 87 0
30 0.0964004 68 [}
31 0.0591203 89 | -2.12001e-06
32 0.00554392 70 | -1.81789¢-05
33 -0.0417218 71 0
34 -0.0648747 72 0
35 -0.058371 73 0
36 -0.0313439 74 | 7.24707¢-07
37 0.00299839

Table 1: Filters obtained in case 2



