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RESUME

Dans ce papier, une méthode est presentée pour
obtenir un spectre de haute resolution a partir de trans-
formations de Fourier a court terme d’un signal echan-
tilloné. La methode est basée sur ladite Transformée
Z00M, qui doit etre modifié dans deux points impor-
tants afin d’obtenir des bons resultats. Nous donnons
une description de la theorie, qui est expliquée et illu-
minée par des résultats de simulations.

1 Introductiqn

When telecommunication or measurement systems are
being designed, the following question is often encoun-
tered:

¢ How can a spectral band with high resolution be
obtained from a gapless or overlapping series of low
resolution short-time spectra?

This spectral magnifier function, also called
"Zoom” (see [1]), is of great interest for measurement
technology and for the processing of sonar and radar
signals.

To solve this problem, there are various possible
methods, see [1,5]. Of these methods, the Zoom trans-
form is investigated and described here in a generalised
form. The classical Zoom transform as portrayed in [5]
means that the complex short-time spectra are written
one under another row-by-row, and a Fourier transform
is then performed vertically over the same frequency
cell of all spectra. The result - to express it in simpli-
fied terms -is then a spectral analysis over precisely that
frequency band which corresponds to the frequency cell
from the low resolution short-time spectrum. The fact
that the real behaviour in this method is more compli-
cated will become clear in this paper. Both processes
together are a 2-dimensional DFT of a 1-dimensional
signal. (In practical applications, one will naturally al-
ways try to implement an FFT.) Such a transform is
computationally attractive and very useful for many
applications in signal processing and measurement,
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especially for systems based on short-time Fourier
transforms. However, the straightforward approach of
using non-overlapping, non-windowed data blocks gives
very bad results, see also [5] . This can be observed in
Fig. 1 for the example of 16 short-time DIFT’s of 16
points of a complex sinusoid with frequency 0.975 Hz
and a (normalized) sampling frequency of 1 Hz. Strong
aliasing effects are visible. Windowing alone does not
help. The intuitive reason is that a rectangularly win-
dowed data block of length T has a bandwidth 2/T,
and must therefore be sampled at least with rate T/2,
which means 50 % overlap. In this paper, it is shown
that by using 75 % overlapping and windowed DFT’s,
very good results are obtained. See Fig. 3 for the same
DFT length as in Fig. 1. We call this method a modi-
fied Zoom-Transform. At this point, let us not miss
the opportunity to refer to a related subject.

A relationship - though not a directly obvious one
- exists with the method of the synthetic aperture (3,
4] from radar and sonar technology: by spatial move-
ment of a short array (aperture), along array (synthetic
aperture) is formed. Now, as is well known, the beam
pattern is the Fourier transform of the array weighting.
If one identifies the successive short-time spectra in the
case of the Zoom transform with the beam patterns
of spatially shifted short arrays, the beam pattern of a
long array is generated by the second Fourier transform
(corresponding to a high resolution spectral represen-
tation). It is therefore no wonder that, in [3, 4], similar
considerations concerning overlapping (of the shifted
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arrays) occur as in Chapter 3. However, the reference
to the problem of read-out of the ”correct” data is miss-

ing in [3, 4].

Classical Zoom-Transform without overlap
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2 Continuous and Discrete Fourier
Transform

The starting point is a signal s(¢) which is sampled
in the time window 0 < ¢t < 7 in accordance with its
bandwidth. Let the sampling interval be

T

ts = — 1

x (1)
Altogether, there are N sampling values s(kt,) where
0<k<N -1

Firstly, let the discrete Fourier transform (DFT) of

s(t) in the time window 0 <t < 7, given by

2mhkn

DFT(s)(n eV (2)

||Pﬂ2

be related to the continuous Fourier transform s°(f) of
s(t), defined by

sxf)::/j:suyr“”ﬂdt (3)

These considerations are not new, but they are an
aid to understanding the two-dimensional considera-
tions which follow later.

It is well known that, with the Woodward symbol

rep (see [2])

i=+oo

Y gt - jts) (4)

j=—o0

repy,g(t) =

the Fourier transform of a signal sampled in the lattice
with the lattice point spacing

g(t)repe,6(1) (5)

fsrepfsgh(f)’ (G)

i.e. it is the periodic repetition of the Fourier trans-
form of g in the reciprocal lattice with the lattice point
spacing fs = 1/t;.

The DFT of s in the time window 0 < ¢ < 7 is then
the Fourier transform of the time-windowed signal

is

1
s(t)rect(— (t - 1/2)) (7)
taken at the frequency points f,, where

an%n 0<n<N-1 (8)

sampled at intervals tg, i.e. altogether,

DFT(s)(n) = [15(t)rect( (t - T/2))}rep, 0(t)] ( n)
(9)

3 Two-Dimensional Consideration
of the Modified Zoom Transform

First of all, the terminology for overlapping short-time
DFT’s will now be introduced:

M: Number of short-time windows in the long-time
window without overlapping

to: Overlap time of two consecutive windows
. . . _t
O: Degree of overlapping, O = %

m: Overlap parameter m = 1—_15, i. e.
m = 1 no overlapping, m = oo full overlap, m = 2
means 50 % overlap,
The overlap expressed as a percentage is 100(1 —

1/m)0

Thus, in the case of overlapping, the position of the
g-th short-time window is (¢ — 1) There remains
7 =T/M, the length of the short- tlme analysm window
with N points. To describe the relationship between
the discrete 2D-DFT of overlapping, weighted pieces of
data, i.e. of the modified Zoom transform, and of a
long DI'T, the following auxiliary construction is intro-
duced: By means of the transform

9(tarty) = stz + 1) (10)

s(t) is converted into a two-dimensional signal. The
following applies:

s(tz) = g(ts,
S(ty) = g(O,ty) =

Obviously, the rectangle

s(1),
s (11)



R(tz,ty) = rect(%— - %)rect(%y - %) (12)
contains all shifted data pieces of s, each of length
7. It can be seen that a 2D-DFT of the windows of
length 7, shifted by (¢ —1)Z, can be described as a 2D
Fourier transform of
1

(%tﬁuﬂi—~)eﬂT—§ (13)

sampled at the lattice points at intervals of At, = i,
in the ¢, direction and Aty = = in the ¢, direction.
Because the sampling in the t, direction is compara-
tively fine, whereas the sampling in the ¢, direction is
coarse, in the following we will call the t;-axis t7; and
the ¢y-axis t.,. The frequency values in the spectrum

are then sampled at the points ( feou, ffir), Where

s

feop =gl =frl, 0<I< N -1 (14)
and
frip = T]Cf/?;r: frr, 0<r<Mm-1. (15)

Here f; is the frequency resolution of the window of
length 7, and fris the frequency resolution of the win-

dow of length T, i.e.
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Therefore, the following expression is obtained:
tsi
{g(tfi,tco)rect(—;f— - %)rect(%? — %)

Xrepts,f/m‘s(tfia tCO)}M(fco,l, ffi,r)~

From this, according to the calculation rules for sam-
pling and Fourier transformation of two-dimensional

signals, the following expression is obtained for the 2D-
DFT:

(16)

32Dn(l’r) = fsmeTTTepfs,mf,-{gM(fco» ffi)
fea P\ —iom i
*sznc()}“’) ~mag *sznc(%)e 2 5T} feorts frir)

= fsmTrepg, ms {8 (F7:)8(ffi — feo)
12”73%}(.&0 ly ff1 7‘)
(17)
As a result of the continuous Fourier transform,
9(tsi,tco) is mapped onto s°(f5i)0(fri — feo), L6, the
values of ¢°(ffi, feo) exist only on the straight line
[ti = feco, where they correspond to those of s™(f).
Because the continuous Fourier transform does not
make any distinction between coarse and fine frequency
axis, s( fy;) means the desired spectrum of s(¢), which

—ionlce . .
*5i1zc(%)e b= *sznc(%})e

~/
then occurs again on the bisector of the angle between
the two axes. Due to the windowing in the time do-
main, these values are blurred in the f., and fy; direc-
tions by convolutions with sinc functions, and because
of the sampling they are repeated periodically at inter-
vals of f; and mf,, respectively. This two-dimensional
signal is then sampled in the spectrum too - see Fig.
2. for s(t) := €27%5frt_ A first consideration of the
result indicates the following problems of the classical
and modified Zoom transforms:

¢ The sampling points in the spectrum are generally
not situated on the periodically repeated straight line
Jeo = ffz'-

¢ The number of points in the case of overlapping
is m times higher than in the case of the simple DFT
over the entire length T.

> Fgrob

R(fgrob,ffei n)

Ffein‘:fgrob

Figure 2

The question is now which NM points should be se-
lected. Because the spectrum on the straight line can-
not be sampled directly, it is then obvious that sam-
pling points as close as possible to the straight line
should be selected. However (with m = 2), ounly the first
half of the staircase is situated in the original region
R(fco, f1iy of the 2D-DFT; the second half is situated
in the periodic repetitions. The points corresponding
to this must then be selected from the original region.
This produces the rather tortuous path indicated by a
thick line in Fig. 2, which represents the best possible
approximation to the desired spectrum. Formally, the
following selection rule is applicable:

$Zoom (1) = s2p”"(rem{round(n/M)}modulo N),
rem(n) modulo mM)

0<n< NM-1.
(18)
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Another question is the following: What does the blur-
ring function look like? To answer this, (17) is evalu-
ated and the following slightly monstrous result is pro-
duced:

s2p”(l, 1) = [25, 8°(f)

fs—periodic

sm{7r

(fcol f)}
(fco/ f)}

_psindm B2 (frin = 1))
sin{n == (frie ~ 1))

=
m fr —periodic

feoq = fol with 0 <1< N =1
frir = frr with 0 < r < mM — 1

e-iﬂ'{%}(fco,l

3m{7r

(19)

Mm~1 (ffi .

_i"r{ mfr

¢
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The blurring function is obtained by substituting the
6-function for s(f). It is a cruciform pattern resulting
from the product of two mutually perpendicular pe-
riodic sinc-functions. The zero crossings around the
main lobes are 2f, and 2fr apart in the f., and fri
directions respectively. The contour from -15 dB to -3
dB in steps of 3 dB has been transferred to Fig. 2. It
can be seen that, in the original region, precisely one
of the sampling points lies within the main lobe.

If this result is now compared with the result ob-
tained from non-overlapping processing (classical Zoom
transform, m = 1,) the following differences are evident:

¢ The period of the repetitions is half as Lnge (here,
only f; instead of 2f; in Fig. 2).

o Consequently, the staircase-like approximation to
the straight line fy; = f., passes through two recurring
regions of blurring, and therefore, the path projected
into the original region likewise passes through the blur-
ring function at two different places.

The effect of this is clearly shown in Fig. 1. It
shows a highly flawed pattern resulting from the under-
sampling and from the associated ”aliasing” of higher

© orders.

4 Effect of Weighting

If, to achieve a better result, one wishes to attenuate
the side lobe levels more strongly by using one of the
usual windows for the DFT, this produces the following
consequences:

In the formula (17), the DFT of the rectangular
window is replaced by the DFT of the window used.

The width of the main lobe of the blurring function
can be regarded as being approximately twice as large
(this applies to all effective standard windows, such as
Hamming, Hanning, Dolph-Chebyshev).

Consequently, in accordance with the rule (18), the
path of the data that are read out passes through the

main lobe of the blurring function four times if there
is no overlapping, and still does so twice if there is
a 50 % overlap, thus still producing unusable results.
This means that a further doubling of the overlapping
must take place in order to ensure unambiguity and
high attenuation of the side lobe level in the high res-
olution spectrum that is read out. The result can be
seen in Fig. 3. Thus, the main statement made in this
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chapter is as follows: A high quality, high resolution
spectrum can be obtained from 75 %-overlapping, win-
dowed short-time spectra by means of a second DIFT
and a read-out rule for the data (18). This modified
Zoom transform avoids the disadvantages of the classi-
cal Zoom transform.

5 Summary

This report describes a method for generating a high
resolution spectrum from blocks of low resolution short-
time DFTs of a samples time signal. The method is
based on a second DFT over the corresponding cells
of the individual short-time spectra. This is known as
the ”Zoom transform”. However, to achieve reasonable
results, two modifications of the usual method are re-
quired. If attention is paid to these points, very good
results are obtained from this modified Zoom trans-
form.

6 References

[1] Bachmann, W.: Signalanalyse, Grundlagen und mathe-
matische Verfahren. Vieweg, 1992.

[2] Cattermole, K. W.: Signale und Wellen. VCII Verlags-
gesellschaft, Weinheim, 1988.

(3] Rihaczek A. W.: Principles of High-Resolution Radar.
Mcgraw-IIill, New York, 1969.

[4] Stergiopoulos S., Urban H.: A New Passive Synthetic
Aperture Technique for Towed Arrays. IEEE J. Oceanic
Eng. 17 (1992) 1, S. 10-25.

[5] Yip, P. C.: Some Aspects of the Zoom Transform. IEEE
Trans. Computers 5 (1976) 3, S. 287-296.



