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RESUME

La qualité d’une critére pour la sélection d’un ordre se caractérise
par sa capacité de sélectionner des modeles dont I'espérance de
Verreur de prédiction PE(p} est minimale. Une modéle est sous-
optimale si elle contient oubien trop ou bien pas assez de
paramatres. Le codt de la sélection d’un trop grand ordre est
strictement statistique, tandis que le coGt de la sélection d'un
ordre qui ne contient pas assez de parametres dépend entiérement
des valeurs des parametres du processus qui ait engendré les
échantillons. Une critere se sert d’une facteur de décision a qui
détermine la raison entre les co(ts.

In practical autoregressive (AR} model fitting to a data series,
the parameters have to be estimated and the order has to be
selected. In general the search is for that particular combination of
parameters and model order that minimizes the squared error of
prediction. This model has optimal forecasting capacities in the
time domain and it can be shown that it yields an equally good
description in the frequency domain [1]. For the selection of the
model order several order selection criteria have been developed
[2,3,4,5,6]. Individually all these criteria possess optimal
asymptotical properties, but a wrong order is easily selected in
practice. A thourough analysis of the behaviour in finite samples
has given rise to an improvement, making use of the elements of
Finite Sample Theory.

The central idea of the Finite Sample Theory [7,8,9] is to
improve upon the asymptotic theory by replacing 7/N, N the
number of observations, by the quantity v{i,.), that is based on the
actual degrees of freedom which play a role in a given estimation
method [10]. Four different AR estimation methods [11] have
been investigated for the Finite Sample Theory. The Yule-Walker
or autocorrelation method (YW), the method of Burg, the least
squares method that minimizes both Forward and Backward
residuals, LSFB, and the least squares method that uses Forward
residuals only, LSF. The finite sample variance coefficients, vfi.),
have been defined for these four estimation methods as:

v{i,YW) = (N-i)IN{N+2)

v{i,Burg) = 1/(N+1-i) (1
v{i,LSFB) = 1/(N+1.5-1.5/)
v(i, LSF) = 1/(N+2-2])

For all methods, v(0,.) = 1/N if the mean of the observations is
subtracted before the estimation of the parameters, otherwise
v(0,.}] = 0; all v(i,.) approach 1/N for N much greater than /.

ABSTRACT

The quality of an order selection criterion is characterized by its
capacity to select models with minimal expected squared error of
prediction, PE(p]. The possibilities of selecting a suboptimal order
can be divided in overfitting and underfitting. The costs of
overfitting are determined by statistics, whereas the costs of
underfitting depend on the values of the parameters of the data-
generating process, which have been excluded from the model.
The penalty factor of a selection criterion influences the ratio
between these costs.

In the search for accurately opredicting AR models the
magnitude of the penalty factor in order selection criteria is the
subject of investigations in this paper. The asymptotic order
selection criteria and their finite sample counterparts have been
evaluated with respect to their order selection performances.
Models with more as well as models with less parameters than
the best model order are suboptimal with respect to their
forecasting capacities. The Selection Risk has been used as a
meta-criterion to compare the average selection results of these
different criteria. Balancing the costs of both sides leads to the
order selection criterion with that value of the penalty factor such
that the best predicting model will be selected. It is demonstrated
that the choice of the penalty factor influences the balance
between the costs of overfitting and underfitting.

AR ESTIMATION

An autoregressive process of order K is defined as:

K
Xn+ Y, ai(K)Xp_i=€p, (2)
i=1

where afK) is the parameter vector and g, is i.i.d., with zero

mean, variance 082 and finite fourth order moments.
To an AR series x,,, which has been generated by this K-th
order process, an AR model of order p can be fitted:
p
Xn+E ailp)xp-i=&p. (3)
i=1
When fitting this AR{p) model to the data, the elements of the
parameter vector d/p) have to be estimated and the order p has to
be selected. Two typical quantities, often erroneously
interchanged, arise in the estimation procedure: the residual
variance, S2Ip), and the Prediction Error, PEfp). The residual
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variance is defined as the average squared fit of the estimated
model to the data x,, from which the parameters have been
inferred. The value of Szlp} will always decrease for increasing
model order p, but the capacity of the model to predict the future
behaviour of the series will only improve as long as significant
parameters are included in it. The predictive capacity of the model,
expressed by the squared error of prediction, PE(p), worsens with
every extra parameter that is added after all the significant

. parameters have been included in the model. The PE(p], is found
by weighting the estimated parameter vector d(p) with the PXp
submatrix of the theoretical covariance structure of the generating
AR(K) process, R [10]:

PE(p) = 47(p) R, (p) élp). (4)

Small differences between competing model orders determine
which order is best to select. These differences are considered to
be of magnitude order 7/N in the asymptotical Large Sample
Theory. Different order selection criteria have been proposed
making use of elements of information theory. The criterion A/C(p)
[3] has been foliowed by modifications: a consistent variant of
AlC{p/ has changed the penaity factor 2 of AIC(pj into in(Vj {4,5],
aminimal consistent variant [6] uses 2inin(N). All these criteria use
the logarithm of the estimated residual variance. Together they
can be described as a generalized information criterion, G/C(p, aj:

GIClp,a) = In(S2(p)] + a%, {5)

with o the penalty factor, such that with
a=2itis AIC(p],
a=InfN} it describes a consistent criterion,
a=2inin(N}, a minimal consistent criterion,
a= 3, 4, etc., any other criterion.

In the Finite sample Information Criterion, F/C(p.a/ [7,8,9] the
factor p/N has been replaced by a summation over the first p finite
sample variance coefficients vfi,.) (1). So the FIC(p,aj, besides
depending on a, takes the characteristics of the estimation method
into account via vfi,.) (1). For each value of a, the finite sample
equivalent of the G/C(p,a/ is defined as:

p
FIC(p,a) = In(S2(p}] + a ¥ vii,.). (6)
=0

The performances of G/C(p,a/ and FIC(p,a) have been evaluated
in so-called fixed order experiments [9], where the average of the
criterion value is determined for each model order individually.
These simulation results are displayed in Figure 1, where the
criterion values are given as a function of the model order fora=2
and a=/In{N). GIC(p,a) has a wrong artificial high order maximum
for both values of a; afterwards the criterion values decrease and
it will eventually give a deeper minimum than is found at the
optimal order. The FICfp,a), on the contrary, has only one
pronounced minimum under the condition that a> 1. Above the
true model order the criterion value keeps increasing with a speed
that depends only on the numerical value of a. The improvement
provided by the FIC(p,a/ is due to the fact that the influence of the
estimation method has been taken into account.

Closely related to the PE(p) and a measure for comparing the
performance of the different order selection criteria is the selection
error, SE(pJ, which is defined for a model of order p as:

N&T(p, o) -aTIK, )] R, [dlp, =) -alK, )] (7)

SEp) = >

T¢

where in the vectors dfp, «) and afK, e} zeros have been added

—FIC(p,2)
--FIC(pinN) ~GIC{p.nN)

~GIC(p,2) /

I

FIC and GIC

0.5+
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Figure 1: The G/Cip,a) and its finite sample counterpart

- FIC(p,a) for LSF estimates in 10,000 realisations of an AR{3)

process with /=40,

for orders higher than p and K respectively. It is easy to prove
that:

SEip) = N | PER) _ 1], (8)

0¢?

because all three products with afK, «J in {7}, (8) yield 052. The
expectation E/SE(p)] equals asymptotically p for p=K; the finite
sample value follows with (7} as [12,13]:

d . (9)
ESEpP] =N IO +vli1-1),  p=k.
i=0

The Selection Error S&(pj of (7} is used to compare the quality of
different order selection criteria for various sample sizes.

EFFICIENCY OF ORDER SELECTION

The different values of a have been evaluated with respect to their
accuracy of selection.The accuracy is expressed in terms of the
Selection Risk. The reasoning that underpins the choice for a can
be applied to the asymptotic G/Cip,a) as well as to the finite
sample FIC(p,al). The possibilities of selecting a wrong order can
be separated in overfitting and underfitting. In case of overfitting
the selected model M is greater than K and consequently
insignificant parameters are included in the model. The expected
costs of overfitting can be calculated with statistics. When an
order is selected that is too low one or more significant higher
order parameters have been excluded from the model. The
expected costs of underfitting therefore depend on the true
process by the deterministic values of these higher order
parameters of the process.

Most order selection criteria minimize either the costs of
underfitting or those of overfitting. When g=2 the costs of
underfitting are minimized [ 14] disregarding the statistical costs of
overfitting, while a=/n{N} may result in unlimited high costs of
underfitting as the sample size increases, since a is a function of
N. The "best" criterion, however, balances the costs of overfitting



Table I: Asymptotic value of the Selection Risk due to over-

fitting, SRAR(K.L-K,a)], as a function of the penalty a in
E[GIC(p,a)], for K=0 and L= 100.
a SR a SR a SR
.0 | 100.000 2.6 1.288 6 132
.5 98.964 2.8 1.014 7 .080
1.0 56.788 2.915 915 8 .049
1.5 7.524 3.0 .851 9 .031
2.0 2.568 3.2 723 10 .019
2.2 1.936 4 411 12 .007
2.4 1.620 5 226 20 .000

and underfitting {14,15], which comes down to finding the
equilibrium between respectively a stochastic and a deterministic
quantity. In this section the two extremes are treated, being the
asymptotical @ = 2 on the one hand and the consistent @ = /n{N}
on the other. '

The Selection Risk, SR(K,L-K,a) is a function of the order of the
process that originally generated the data, K, the maximum order
that can be overfitted, L-K (L is the maximum order considered for
selection), and the penaity factor in the order selection criterion
used, a. The Risk is determined as follows: In every run of
repeated Monte Carlo simulations an AR(K) process generates N
observations, based on which models are estimated and the
criteria select a model order. The Selection Error of {7) is now
computed in every run for every criterion and the averages of the
simulation runs are calculated for each of the criteria considered.
It should be noted that this averaging procedure involves different
mode! orders, because it is highly improbabie that a criterion
chooses the same model order in every run. The order selection
criterion with smallest average SE(p) is defined to be the best.
This value is called the Selection Risk, SA(K.L-K,a), which
expresses the accuracy of the order selection criteria considered.

Shibata {14,15]} has given a formula for this SR(K.L-K.a) of a
model of orders selected with G/C{p,al, neglecting the possibility
of underfitting. It is given by:

L-K
SRIK.L-K,a) = K+ Y Problx?,., >am).
m=1

Table | gives the value of SRIK,L-K,a/, for L =100 and K=0.
It shows that the costs of overfitting are enormous when a is less
than 2. However when o takes values greater than, say, 7 the
costs become practically zero. This is the basis of the consistent
order selection criteria where a is a function of N, e.g. In(N) or
2inin(N). The Selection Error due to overfitting becomes zero,
when A-eo in a situation where a deterministic set of process
parameters afKJ is given.

The asymptotic distributions, Prob(M=p) have been
determined [15] for orders M selected at the minimum of FPE(p)
or GIC(p,a) for a=2. The probability of selecting an order M > K
has been computed together with its Selection Risk, SR(K,L-K,2).
The risk of overfitting increases the average Prediction Error. The
FPE(p], however, will estimate a decreasing value of the PE(p) in
the case of overfit, which is logical otherwise no overfitted model
would be selected. The result is that the part of the residual
variance which seemed to be explained above the true order
equals the increase in the Prediction Error. The residual variance
can be used to compute the FPE(p), which can be modified like
the PEfp) in (7}, (8). In formula, for asymptotical theory with a=2:

{10)

EIN{mMin[FPEM) M=K,K+1,....L1/gz2-111-K =
L-K
-[SRIK,L-K,2)-K1+2 Y i Prob{M=K+i).
i=0

(11}

Both the theoretically expected increase of the Selection Risk,
SRIK.L-K,2) - K, and the decrease of its estimator (11) are
presented in Figure 2, given without loss of generality for K=0.
The asymptotical value for L — o for SR(K,L-K,2) - K {again with
a = 2}is 2.57, which is already achieved for a maximum possible
overfit of 20 orders (L-K'=20). Also the modified FPE of (11) has
a constant value of -.69 then. Practically speaking, Figure 2
indicates that for a penalty factor a=2, the costs of selection
remain almost the same, independently whether 10 or 100
possible orders of overfit are considered. The costs are 2.57 times
the extra cost of always selecting one order too high, K+ 17, in an
AR(K) process. Criteria with @ =2 are asymptotically efficient, but
inconsistent which is the price to be paid for minimizing the risks
of underfitting.

Given a data series of lenght /V the values of the parameters
afK) of the data-generating process determine the loss in a
situation of underfitting. When underfitting only one order the
selection error depends on the last process parameter a, and it
can become infinite for all consistent methods when its magnitude
is near the critical value of [14]:

aK=[(a—1)/N]”2. (12)
This value depends on the sample size N. It can easily be seen
that when this parameter value occurs asymptotic criteria have an
equal probability for selecting the orders K-7 and K, because

ELGICIK-1,a)] = EIGICIK,a)]. (13)
Furthermore, using
EIPEIK)] ~ EIPEKK-11 [1-ax2+1/N] (14)

and (7), {8) and (12} this yields for the critical parameter value:

SRK,L-K,a) = K+a~-2. (1%)

Hence, the Selection Risk can become K+ /n(NJ-2 for order K-7 in
the consistent criterion. Since the expectation of the selection
criterion is equal for the orders K-1 and K, these will both be
selected in 50% of the realisations for N = . For parameter
values larger than the critical one of (12) order K will more often
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Figure 2: Increase in Selection Risk and decrease in its
estimate of equation (11) due to overfit
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be selected, whereas for smaller values this will be K-7. A similar
derivation can be given in the Finite Sample Theory; the results
cannot be presented in a formula as simple as (15).

A POSSIBLE CHOICE FOR O

The penalty factor a influences the ratio between the costs of
overfitting and the possible costs of underfitting. Each choice of
a value of a in G/ICip,a} and FIC(p,a} results in a different ratio
between the two types of errors. Table | shows that the selection
error due to overfitting decreases when the value of a increases.
However, formula (15} indicates that the maximal error due to
underfitting will increase with a for the critical parameter value
(12). Consistent methods neglect the underfitting possibility. The
Selection Risk may become infinite for N — o if the last process
parameter has the critical value of (12). And ¢ = 2, which is
asymptotically efficient, is just the limit for which one order
underfitting will not give an increase in Selection Error.

We'll now calculate, as an example, the optimal value of g for
the case where the K-th parameter of the AR(K) process has the
critical value of {12). The value of ¢ should be chosen such that
the expectation of the selection error due to overfitting is equal to
the maximum of the expected loss in underfitting one order.

In asymptotical theory this value follows by solving {15}, which
yields ¢=2.915, as could also be found approximately with Table
I. For the finite sample F/C(p, a) the results are generally the same.
Table I presents the results of an evaluation of an AR(1) process,
where the optimal ¢ in the finite sample F/C(p,a) are given for
different values of M. The best a is shown to depend slightly on
the estimation method and on the sample size, but is always close
to 2.915, the value of the asymptotical G/Cip.a).

The balance between both kinds of errors can be established
by means of formula {15) and Table I. The balance is O for a=2,
1 fora=2.915; 1.2 fora=3; 2.6 fora=3.5; 4.9 fora=4; 13.3
fora=5 and 421 for a=10. In consistent methods « is a function
of the sample size A, resulting in @ dependence of the balance on
this sample size. However, the formulae for the Selection Risk and
the Selection Error vyield results that hardly depend on A.
Therefore, there might be a good reason to take a greater than 2,
but there is no reason at all to make it dependent on V. An
argument to take very high values for a is that the Selection Error
due to overfitting is made small, whereas the loss due to
underfitting will only occur if the true parameters have a value
near the critical of {12}. An opposite argument to be careful with
higher values of a is that the loss of underfitting becomes much
greater than considered if not only the last parameter, but also a
number of previous true parameters have about the critical value.
The maximum Selection Risk due to underfit becomes Lfa-2) with
(15), if all true parameters have critical values. This illustrates why
a=2 is asymptotically efficient: for each value of a greater than
2, the maximum possible increase in the selection error due to

Table II: Optimal coefficients a for FIC(p,a) for K=1, L =N/3,
based on simulations.

N YW | Burg LSFB LSF
20 2.9 3.1 3.3 3.3
30 2.9 3.0 3.2 3.3
50 2.9 3.0 3.2 3.2
100 2.9 3.0 3.2 3.1
250 2.9 2.9 3.1 3.1
1000 2.9 2.9 3.0 3.0
e 2.915 2.915 2.916 2.915

underfitting goes to infinity for / and L going to infinity.

A priori knowledge about the magnitude of the last parameters
is essential in choosing an optimal value for a for a particular
application. However, knowledge about the magnitude of the last
parameters without knowing the order of the process is
exceptional. In the case with a critical value for the last parameter,
a=3 seems to be a good compromise. The small variations in
Table Il allow this advice; if required so, Table il gives refinements
for sample size and estimation method.

CONCLUSIONS

The purpose in modeling disturbances is to find the most
accurately predicting model from finite samples. A finite sample
theory for AR proces$es shows the method of estimation to have
a considerable influence as soon as the magnitude of the model
order is not negligible with respect to the sample size. The finite
sample theory gives an alternative for almost every existing order
selection criterion. The quality of selection criteria can be
evaluated with the Selection Risk, that has both an underfitting
and an overfitting component. Asymptotic arguments minimize
either the underfitting costs or the overfitting costs. The best is a
balance between both costs. A good predicting model is found
with the criterion F/IC{p,3) which balances the expected statistical
increase of the prediction accuracy due to overfitting with the
maximal deterministic cost of underfitting one order, for the critical
parameter.
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