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RESUME

Le traitement du signal chaotique consideré dans cet
article consiste & la recherche d’orbsites périodiques
instables qui existent dans le régime chaotique, a la
base d’une série d’échantillons. L’hierarchie d’orbites
instables est particuliére pour le type d’attracteur
et les valeurs de paramétres du systéme. Char-
actérisation du comportement chaotique par les or-
bites instables peut &tre considéré comme un type
d’identification ou de codage du signal. Les or-
bites instables découvertes dans P’attracteur peuvent
étre utilisées dans des procédures de contréle. Les
méthodes de stabilisation d’orbites instables dans les
systémes chaotiques sont décrites dans cet article.

1. INTRODUCTION

In recent years a varity of tools for processing deter-
ministic and predictable (eg. transient or periodic) or
stochastic signals have been developed. None of these
methods is fully suitable for processing chaotic signals
— a specific class of deterministic signals possessing the
property of “sensitive dependence” on initial condi-
tions thus being unpredictable in practical sense [5].
Many real physical systems operate in chaotic regime
and signals of this type are often encountered in engi-
~ mneering practice. From the signal processing point of
view detection, characterisation, identification, analy-
sis of chaotic signals is interesting also because of many
potential applications [10], [12].

In this paper we describe methods developed for pro-
cessing chaotic signals in view of the problem of con-
trolling chaotic systems. We exploit the fact that un-
stable periodic orbits are inherently embedded within
the strange attractors. Existence of a coutable infinity
of such orbits is often recognised as acriterion of exis-
tence of chaotic behavior [1], [2], [5], [6]. We analyse
unstable periodic orbits characterising chaotic behav-
ior on the basis of chaotic signal (time series) measured
from a real systems.

ABSTRACT

Chaotic signal processing is understood in this paper
as uncovering, from a discrete time series of state vari-
ables, of the hierarchy of unstable periodic orbits em-
bedded within the chaotic attractor. Such a charac-
terisation of chaotic behavior can be considered as a
particular kind of process identification or signal cod-
ing - the hierarchy is unique for a given set of sys-
tem parameters and signal measured from the system.
The uncovered unstable periodic orbits can be used in
controlling the chaotic system. We describe the key
developments in this area — the methods of stabilisa-
tion of any arbitrarily chosen unstable periodic regime
existing in the chaotic state.

Chaotic signal processing is here understood as un-
covering of unstable periodic orbits - we show that this
task is feasible and numerically tractable - specific spe-
cific algorithms and programs noindent have been de-
veloped for this purpose. We describe the details of the
control algorithms which further use the computed un-
stable periodic orbits. We will consider the approach
introduced by Ott, Grebogi and Yorke (OGY) [11] -
controlling chaos by stabilizing one of the unstable pe-
riodic orbits embedded in the chaotic attractor.

2. MODELS OF CHAOTIC SYSTEMS

In our study we assume that the state evolution of
the considered chaotic dynamical system is described
by either a differential equation x(t) = F¢(=(t)) or
a difference equation z(n + 1) = Fp(z(n)). Typically
a signal we observe is some function of the state vari-
ables G(&), in many cases is discretized in time and
value (sampling, A/D conversion) and can be distorted
by noise, fading, interference etc. In many cases we
have just one measurable variable and we encounter
the problem of reconstructing the state variables (em-
bedding problem). There are interesting issues in this
area — the most commonly used is the method of delay
coordinates [5].
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How can we recognise that a signal measured from
some process is chaotic and how can one characterise
such a signal. First approach is to calculate so-called
metric invariants: Lyapunov exponents, dimensions,
entropy, spectrum of singularities, invariant measures
etc. The other approach deals with topological prop-
erties of trajectories.

3. CHARACTERISING CHAOS BY
UNSTABLE PERIODIC ORBITS

Characterisation in terms of unstable periodic or-
bits belongs to the class of topological methods. The
knowledge of the structure of unstable periodic orbits
enables us to find an approximation to the curvatures
of the nonlinear multidimensional Poincaré map using
a continuous polygonal surface made of hyperplanes in
such a way that these hyperplanes are tangent to the
graph of the map at the unstable periodic points and
their slopes are determined by eigenvalues of the Ja-
cobian matrices calculated at these points. One can
obtain any needed accuracy of approximation as there
exists a countable infinite number of unstable periodic
orbits with growing periods and these orbits are dense
on the asymptotic strange set [5], [7] — recovering
more and more unstable cycles we obtain better ap-
proximations.

The main features of the characterisation in terms
of unstable periodic orbits are [1], [2], [7], [9]:
o Periodic orbits and their eigenvalues are topologi-
cally invariant — different representations of the same
system (up to a smooth transformation of coordi-
nates) must preserve their topological properties (a
fixed point must remain a fixed point in any repre-
sentation and the same applies to periodic orbits),
e Periodic orbits constitute a “skeleton” for the attrac-
tor — they determine its spatial layout,
e The eigenvalues of closed orbits are metric invariants
— they describe the scaling between different pieces of
the attractor.
o There exists a hierarchical ordering of unstable pe-
riodic orbits — short cycles give good approximations
of the strange set.
o Periodic orbits are robust — they vary slowly with
smooth parameter variations. The same applies to
their eigenvalues.
¢ Unstable periodic orbits can be successfully extracted
from experimental data - specific computational meth-
ods have been developed for this purpose and imple-
mented in computer prrograms.

4. UNCOVERING UNSTABLE PERIODIC
ORBITS

The numerical procedure for processing of the
chaotic signal assumes that we have a series of suc-
cessive points {z;}, ¢ = 0,1,...N on the system tra-
jectory measured using some data acquisition proce-

point z, in this time series. We follow the succesive
points Tp41, Lnyo etc. until we find the smallest k such
that ||zn4x — zn|| < €. It is further claimed that the
orbit detected in this manner lies close to the unstable
periodic orbit whose period is approximated by that
of the detected sequence. (see Auerbach et all. [1],
Lathrop and Kostelich [7], Cvitanovi¢ [2]). Choosing
suitable ¢ a variety of periodic orbits can be uncovered
from the experimental signal.

Such an approach has several drawbacks. Firstly,
the results strongly depend on the choice of € and the
length of the measured time series. Further, they de-
pend on the choice of norm and number of state vari-
ables available. In the experiments we normalised the
size of the attractor and used the Euclidean norm. Sec-
ondly, the stopping criterion (||Zm+r — Tm|| < €) in
the case of discretely sampled continuous-time systems
might give wrong results. One can never tell whether
all orbits of a given period have been recovered.

In many applications , however, it is sufficient to find
only some of the unstable periodic orbits embedded in
the attractor — this is the case for example in the Ott,
Grebogi and Yorke approach to controlling chaos [6],
(11].

Among unstable periodic orbits calculated using the
described procedure there are always groups of nearly
identical ones. It is very important to introduce a cri-
terion for distinguishing different periodic orbits. This
can be done on the basis of calculating the distance be-
tween the orbits. The distance between orbits I'; and
T'; is defined as: dorp = maxy,er, [ming, er, [|zx ~ 4]
Two orbits whose distance is smaller then the pre-
scribed threshold are considered equal. With greater
¢ more orbits with given period were detected most
of them were later recognised as identical - there was
no significant difference in the number and shape of
different unstable periodic orbits found.

5. DETERMINATION OF ORBIT
EIGENVALUES

This procedure follows the guidelines given by Lath-
rop and Kostelich [7], and also described by Ott et all.
[11]. Let us take a point z,, belonging to the chosen
orbit, laying on a chosen section (Poincaré) plane and
a 3¢ neigborhood around it. Let {z3.} be the set of
points in this neighborhood. We assume that the dy-
namics in this small neighborhood is nearly linear and
can be aproximated by z;4; = Az; + Ba. A and B
can be found using eg. least squares procedure. Ma-
trix A gives an approximation of the Jacobian matrix
of the periodic orbit. For the evaluation of B repeti-
tion of the whole procedure for slightly changed o is
needed. The eigenvalues of the Jacobian matrix can
be further evaluated using standard methods.



6. STABILIZATION OF UNSTABLE
PERIODIC ORBITS

We restrict the description to three-dimensional con-
tinuous dynamical systems. Let us assume that the
equations of the system can be written in the form:

& = Fe.p) 1)

where p is some accessible system parameter which can
be perturbed around its nominal value po with maxi-
mal possible perturbation ép,,q.. In the first step we
must choose a hyperbolic-type periodic orbit we want
to stabilize. It could be one of the unstable orbits foud
using the procedure described in the previous section.
Once the goal of the control is fixed a Poincaré section
for the trajectories of our three dimensional continuous
system must be chosen in such a way that it intersects
transversally the orbit we want to stabilize. Let us
assume that the Poincaré map of the system has the

form:
= f(fia p) (2)

piercing of the surface of section
by the trajectory. Let us denote the time of the 3t*
intersection by #;. First we describe the control method
for a period-one orbit, which corresponds to a fixed
point in the Poincaré map.

Ott-Grebogi-Yorke method

Let us recall briefly the OGY [11] control idea. Let
&r = f(&F,po) denote the unstable fixed point on the
Poincaré section which one wants to stabilize. We use
the linear approximation of the Poincaré map near the
fixed point {7 and the nominal value of control param-
eter po.

it
where §; is the itk

6&'.‘_1 = Mé&&; + ’w{sp,' (3)

where 6&; := & — €F, 6pi i= pi — po, M := D¢ f(&F, po)
and w = %ﬁ(ﬁp, Po). Matrix M is the Jacobian ma-
trix of the periodic orbit. Let e,,e; be the unsta-
ble and stable eigenvectors of matrix M, and A, A,
the corresponding eigenvalues. Since by assumption
ér is hyperbolic then |A,] > 1 and |A;] < 1. Let
fu, fs be the contravariant basis vectors defined by:
foew=fu-es=0and fy-e, = fu-eu=1. In
order to control the system we observe the trajectory
until it comes close to the chosen periodic orbit and
then modify the control parameter in such a way as to
push the trajectory onto the local stable manifold of
the periodic point. This condition can be formulated
as fy - 6&41 = 0. From that we can derive the formula

for ép;:
— b6 (@

One has to assume that the generic condition f,-w # 0
is satisfied. The control signal p; = pg + 6p; is ap-
plied in the system only at the very moments when
the actual chaotic trajectory passes near the chosen

bp; =

periodic point. Since by assumption the system is er-
godic the trajectory will pass arbitrarily close to the
chosen point.

Dressler-Nitsche modification

Dressler and Nitsche [4] noticed that when using
time-delay coordinates the experimental surface of sec-
tion map f depends not only on the actual value p; but
also on the preceding value p;_4, i.e.

= f(&,pi-1,p:) (5)

The linearization of the system can be written in the
form:

i1

6841 = MEE; + vépi—y + udp; (6)

where M = D¢ f(ér,po,P0), © = 3p 1(EF,PO,PO) and

U= 5pi(‘fF’p0’ po). Demanding f, - 6§;41 = 0 one can

obtain the condition for ép;:

fu -
fu fu-u

This control formula could be unstable. In the case
|M| > 1 the control signal ép; could grow until it
exceeds the maximum allowed perturbance §pq4.. To
avoid this Dressler and Nitsche proposed to find a con-
trol law for §p; such that dp;4; will automatically be-
come zero. This is done }\V demandmg that the SVs-
tem stabilizes in two steps and §p;4+1 equa.l zZero, i.e.
Ju - 6&y2 = 0, 6piy1 = 0. One can obtain then the
following control law:

= fu - 66 -

6pi = 5}71 1 (7)

A2 Afu-
6pi = — : 86— T gy
P /\ufu'u+:fu‘vf ¢ ’\ufu'u+fu‘v Pi-1

(8)
The above control formula has better stability proper-
ties than formula (7).

Control of higher-period orbits

There are several possibilities for stabilizing higher-
period orbits. The simplest one is to consider an
period-m orbit on the Poincaré section as a fixed point
of map f™. All parameters necessary for the control
can be obtained in the same way as for period-one or-
bit. The only difference is that the control signal is
applied every m** piercing of the section plane. The
main advantage of this approach is that we need to
calculate and store in memory very few values neces-
sary for the control. We have found that this method
could work properly for low period orbits (2 or 3). For
higher-period orbits after m piercings of Poincaré sec-
tion trajectory could wander away from the desired
periodic point and the goal of the control could be
lost.

Ott, Grebogi and Yorke [11] proposed a method
which overcomes this problem. Let the period-m orbit
in the Poincaré section be: &, &F,,. . €Fp,EFpys =

&r . Let
6611.-}-1 = Mnéfn + 'wnﬁpn (9)
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be the linear approximation of the Poincaré map near
the point £g, and the nominal value of control param-
eter po.

Let f,, fs be the stable and unstable contravariant
basis vectors of M.

Requireing fun+1 * 6€n41 = 0 one can obtain the
following control law:

_fu,n+1 Mn 6§n (10)
fu,n+1 * Wy
There is a number of parameters that must be calcu-

lated and stored — their number increases linearily with
m, the accuracy is independent on the period.

6pn =

We have performed several experiments of control-
ling chaos in Chua’s circuit. In our experiments we
used the implementations of the nonlinear resistor Np
(using two op-amps) proposed by Kennedy and mod-
ified the circuit by adding a linear, voltage-controlled
resistor in parallel with the nonlinear one. We used
a high-performance data acquisition card (Advantech
PCL818) to monitor all state variables. Using the
recorded time series we were able to find unstable pe-
riodic orbits embedded within the chaotic attractor
[8, 9]. Calculation of eigenvalues and eigenvectors of
periodic orbits as well as determination of control sig-
nals was carried out using the developed software pack-
age [3]. The control signal was applied to the circuit
from the computer using the analog output channel
of data acquisation card. We implemented all the de-
scribed  methods in computer programs. A number
of experiments in stabilizing periodic orbits embedded
within the attractor obtained from real Chua’s circuit
were performed [3]. The main problem in real imple-
mentation is the noise introduced by quantization dur-
ing A/D conversion of signals. This causes that pe-
riodic orbits found and control values calculated and
supplied to the circuit are not accurate.

7. CONCLUSIONS

Using the developed application—specific software
package we were able to uncover, from discrete time
series of state variables (measured from a real physical
electronic system or numerical exeriment), the hierar-
chy of unstable periodic orbits embedded within typi-
cal chaotic attractors. This hierarchy (ie. the lengths
and the number of orbits of distinct types) is specific
to the particular sets of system parameters and gives
a characterisation of the attractor which exists for this
choice of parameters. Uncovering of the hierarchy of
unstable periodic orbits characterising chaotic behav-
ior can be considered as a particular kind of process
identification or signal coding - the hierarhy is unique
for a given set of system parameters and signal mea-
sured from the system.

The detected orbits were further used in the control
procedures. In a number of numerical and laboratory
investigations [3]. The methods and algorithms de-
scribed in this paper can be used also in studies of
different physical systems.
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