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Abstract

Due to roundoff the orbits of maps on a finite phase space necessarily be-
come periodic when a digital computer is used for iteration. In typical cases
the average period length scales with the machine precision, the roundoff
scaling exponent ¢ being related to the Renyi dimensions D(q) of the corre-
sponding invariant probability measure. Under a random map assumption
it can be shown that € = .D(2), whereas for critical systems such as the
Feigenbaum attractor € = D(c00). For certain chaotic maps the random map
assumption breaks down, leading to anomalous roundoff scaling behaviour.
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1. Introduction

The rapid development in the field of
nonlinear dynamics during the past fif-
teen years was only possible due to the
use of computers. In fact, most papers
in nonlinear science are inspired by nu-
merical experiments, only in rare cases
it is possible to analyse a nonlinear dy-
namical system without using a com-
puter. Hence it is reasonable to ask
for the cumulative effects of roundoff
errors, especially with respect to the
sensitive dependence on initial conditi-
ons for chaotic systems. Many authors
have already dealt with this question
([1]-[10], and references therein).
Computer roundoff can be regarded
as a discretization of the phase space.
We are familiar with the enormous ef-
fects that can be produced by a dis-
cretization of time: For example, the
continuous-time dynamical system

= pe(l — ) (1)
has the simple solution

1
= — 2
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z(t)

l.e., z(t) asymtotically approaches a fi-
xed point for arbitrary p. On the other
hand, the discrete-time dynamical sy-
stem

Zntr = pza(l = z5) (3)

exhibits, depending on p, bifurcations,
chaos, and many other interesting non-
lincar effects. Can a spatial discreti-
zation cause similar drastic effects as
a temporal discretization does? The
answer 1s yes. As a very simple ex-
ample let us consider the binary shift
map

$72+] - 21:71 - [2$71.J (4)

z € [0,1], | | : integer part. This sy-
stem is known to exhibit strong chao-
tic behaviour: It is ergodic, even mi-
xing. However, if the above recurrence
relation is naively implemented on a
computer, one notices that after a few
iterations all initial values fall onto the
fixed point z* = 0. For the exact sy-
stem this fixed point is unstable, i.e.
it does not attract trajectories. Howe-
ver, for the truncated system the be-
haviour is totally different: Due to the
finite precision of the computer only
a finite number of digits of the initial
value is stored, and as the map (4)
acts as a shift, after a few iterations
all digits are ”shifted away”, the or-
bit falling onto the fixed point z* = 0.
This example is somewhat extreme,
the problems are caused by the spe-
cial piecewise linear properties of the
binary shift map. In general, however,
we should be aware of the fact that
roundoff errors can completely change
the behaviour of a nonlinear map.

2. Roundoff plots

It is clear that due to the finite num-
ber of phase space cells available, the
orbits of any map must become pe-
riodic on a finite state machine. It
turns out that in most cases the aver-
age length of the asymptotic periodic
orbit is much smaller than the num-
ber of phase space cells. As the inve-
stigation of a given dynamical system
with a fixed precision may lead to to-
tally wrong conclusions, a good idea
1s to systematically study roundoff ef-
fects by varying the precision A in an
artificial way and to see what is going
to happen. As a model, instead of f



we may iterate the map

f(z) = alf(z)/A] (5)

For each (artificial) precision A we
may choose a random initial point and
determine the length of the periodic
orbit that is approached starting with
this initial value. We plot the orbit
length as a function of the precision in
a double logarithmic plot and repeat
the experiment for a large number of
different precisions and initial values.
This can be done very easily for arbi-
trary maps f. The resulting "roundofi-
plots”, first introduced in [3], in a cer-
tain sense represent an ensemble of
computers doing their roundoff errors
in a slightly different way. The plots
allow to estimate the typical discreti-
zation behaviour of a given map f.

Figs. 1-4 show these roundoff plots
for various examples of maps f. In
Fig. 1 we have chosen the tent map

f@)=1-20 =el-1,1] (5)
Fig. 2 and 3 show roundoff plots of the
logistic map

flz) =1 - pz* (7)

for the fully developed chaotic case
g = 2 (Fig. 2) and the accumula-
tion point of period doubling g =
1.4011552 (Fig. 3). Finally, Fig. 4
shows the roundoff plot of the circle
map [16]

Onp1 =0, +Q— (k/2r)sin(270,)
(8)
(mod 1) with @ = (v/5 — 1)/2 and
k = 1. Whereas for chaotic maps such
as those of Fig. 1 and 2 one typically
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observes randomly scattered period
lengths, the plots for non-chaotic maps
such as those of Fig. 3 and 4 typi-
cally possess some complicated struc-
tured pattern of points, the details of
which still far from being fully under-
stood. Interesting is the occurence of
roundoff-induced period doublings in
Fig. 3. Common to all figures is the
fact that obviously the average period
length < L > (or, alternatively, the
maximum period length) scales with
the precision A of the machine. The
corresponding roundoff scaling expo-
nent € is given by the asymptotic slope
in the roundoff plots:

<L>~A"F (A—0) (9)

3. The random map model

We are still far away from a gene-
ral theory of the roundoff exponent e.
However, under certain reasonable as-
sumptions of statistical independence
a theoretical prediction on € can be gi-
ven. This is the assumtion that a dis-
cretized chaotic dynamical system can
be properly modelled by a discrete ran-
dom map. Such a random map is sim-
ply an ensemble of N x N matrices A
with entries 0 and 1 only. A 1 at posi-
tion (z,7) means that cell j is mapped
onto cell 2. N is the number of phase
space cells and related to the precision
of the computer and the phase space
dimension d by

N~ A (10)

The random map corresponds to an
ensemble of computers doing their
roundoff in a slightly different way.
Once a member of the ensemble is cho-

sen, its entries are kept constant du-
ring the iteration, which is simply ma-
trix multiplication. The random map
ensemble is defined by the following
properties [8]:

e Each column of A (a member
of the ensemble) contains exactly
one entry 1, all the other entries
in this column being 0.

e The probability p; to find the
entry 1 in row ¢ is the same for
each column j.

e The probabilties p; may be diffe-
rent for different rows 1.

e The position of the 1 in column
k and column j are independent
events for k # j.

Property 1 simply reflects the fact that
a computer uniquely maps a phase
space cell j onto another phase space
cell 2 when a map is iterated. Property
2 is expected to be true for strongly
mixing maps after a short number of
iterations: The trajectory has forgot-
ten its initial value, represented by the
column index 5. Property 3 states that
the invariant measure of a chaotic map
usually is not the uniform distribution.
We assume that even if there are small
roundoff pertubations, the probability
to find the iterate in a certain subre-
gion of the phase space is still given
by the (natural) invariant measure of
the map [5,6]. Property 4 reflects the
sensitive dependence on initial condi-
tions. After a short time of iterations
the actual position of one trajectory is
independent of that of another trajec-
tory corrésponding to another initial
value.



No doubt, the above assumptions
are just mode] assumptions for a dis-
cretized chaotic map after a short
number of iterations. The crucial
point for a random map to be a good
model is that the mixing property
(i.e., the asymptotic independence of
events) of the exact map is not de-
stroyed by the discretization process.
Nevertheless, given the random map
assumptions one can do rigorous ma-
thematics and proof the following [8]:

1. The probability ¢(L) that an orbit
terminates in a periodic orbit of
length L is given by

Z Z p11p12 ' 1~

k L 11 12
(11
The star indicates that all indices

S—rt

21,...,t; are different.

2. For A — 0 the average length
< L>=YN Lq(L) scales as

D(Z)

< L>~ATPO L NEE o (12)

Here

D) =g ios St 09

is the correlation dimension of the
measure g (6: cell size):

p= [ duz)  (14)
i—th cell

3. The probability distribution of
the transient length T (i.e., the or-
bit length until the asymptotic pe-
riodic cycle is reached) coincides
with the probability distribution
of the period length L. In par-
ticular, the averages < T > and
< L > coincide.

Eq. (12) was first conjectured in [7],
a rigorous proof was given in [8].
Numerical experiments indicate that
for generic chaotic maps the above
consequences of the random map as-
sumption are approximately satisfied.
Hence the random map model seems
to be quite an appropriate tool to deal
with chaotic discretized maps. Ex-
ceptions are piecewise linear maps, for
which the above assumptions of sta-
tistical independence can be violated.
We will deal with this in section 5. It
should be clear that there are many
further interesting questions that can
be asked with respect to discrete dyna-
mics. For example, an interesting pro-
blem is the average number of coexi-
sting cycles of the discretized map. At
least for random maps with uniform
distribution p; = 1/N it is known [1,4]
that this number is quite small and
grows logarithmically with V. In prac-
tice one observes that there is just one
or at best a few cycles that attract
almost all initial values, whereas the
remaining cycles appear to be less im-
portant.

4. Critical systems

It is quite clear that random maps can
only be a good model for discretized
dynamical systems with positive Lya-
punov exponents. For critical systems,
however, such as the logistic map at
the accumulation point of period dou-
bling, the Lyapunov exponent vanishes
and we have to look for a different mo-
del to describe the discretization beha-
viour, as the random map assumptions
are not valid any more. It turns out

that for these systems still the Renyi
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dimensions D(q) defined by

1 pd
s—=0g—1 logd

(15)

determine the roundoff scaling beha-
viour, this time, however, the limit di-
mension D(oo) is relevant. For a sy-
stem with Lyapunov exponent 0 little
pertubations such as roundoff errors
will not grow exponentially fast during
the iteration process. Rather, we ex-

- pect that the difference between the

exact orbit and the rounded orbit will
be of the order of the precision A of the
machine. This means that the maxi-
mum orbit length is determined by the
minimum distance d,,;, between orbit
elements of the exact map: As soon
as A > dn, the orbit cannot be re-
solved. For the Feigenbaum attractor
of a single humped map with a ma-
ximum of order z, let dﬁ;?n denote the
minimum distance of 2" subsequent or-
bit elements on the attractor. This di-
stance scales as

&, ~ (=) (16)

where o = «fz) is the Feigenbaum
constant [11]. From A ~ d™ and
< L >~ 2™ we obtain

1

<L>"V A_C € —=
zlog, a

(17)

Expressed in terms of the Renyi di-
mensions, 1/(z log, «) is just the Renyi
dimension D(co) of the Feigenbaum
attractor. In general, for arbitrary dy-
namical systems D(oo) describes the
scaling behaviour of the region of
the phase space where the invariant
measure is most concentrated. In this
region the discretized orbit of a critical

system becomes periodic, as here the
distance between orbit elements takes
its minimum value. Thus, for these ty-
pes of systems we expect that in ge-
neral the roundoff scaling exponent is
given by

¢ = D(o0) (18)

In [3] we have tested eq. (18) for the
Feigenbaum attractor for various va-
lues of z and found very good coin-
cidence between the values of D(o0)
and the slope in the roundoft plots.
Moreover, it turns out that for arb:-
trary z > 1 there is a ”super-universal”
constant ¢; that bounds the exponent
D(o0) from above [3]:

D(o0) < €0 = 0.38165305  (19)

D(c0) takes its maximum value ¢ for
z = 1.6922. The ”physical” meaning
of the constant ¢y is the following: No
matter which universality class is cho-
sen, there is a principle bound on resol-
ving the Feigenbaum attractor. With
a digital machine of precision A it is
only possible to see orbit lengths that
satisfy L < const A~. Notice that
this is less than square root behaviour.

5. Breakdown of the ran-
dom map assumption

It is quite clear that critical discreti-
zed systems do not satisfy the random
map assumptions, because the exact
system is non-chaotic. This results in
the fact that the roundoff scaling ex-
ponent is given by D(oo) rather than
1D(2). What is more surprising is the
fact that even if the exact dynamical
system has strong mixing properties,
these canbe destroyed by the discreti-
zation process, leading to a breakdown



of the random map assumption and to
anomalous roundoff scaling. As an ex-
ample, let us consider the class of maps
on the interval [—1,1] defined by

Zopr =1 — 2z (20)

where z € [1,00). A general theorem
of Misiurewicz {12] guaranties the exi-
stence of an absolute continuous inva-
riant ergodic measure. The Renyi di-
mensions are given by [13,14,15]

1 g <4qc
D = 21
@={i. 15 @

where ¢. = z/(z—1). In particular, we
obtain

=137 @
and )
D(oo) = 2 (23)

Numerically one indeed observes in a
roundoff plot the slope ¢ = 1D(2)
for z > 1, at least within statistical
and systematic errors. However, when
z approaches 1, the behaviour of the
discretized system suddenly changes:
Suddenly there are very long periods,
of the same order of magnitude as the
number of phase space cells available
(see Fig. 1). Indeed, the numerical
results indicate that the slope in the
roundoff plots is given by!

1 z=1
€ = % 1<z<?2 (24)
£z22

The long period lengths occuring for
z = 1 can be explained by the fact that

Tn [3] we only investigated integer z, for

which e = 1
Z

one possible discretization scheme is to
map each cell of the phase space ontoa
different phase space cell, i.e. no prei-
mages coincide (this is possible due to
the piecewise linear properties of the
map). Then the length of the periodic
orbit must be of the same order of ma-
gnitude as the number of phase space
cells available, which leads to ¢ = 1.
Actually, the situation for z =1 is so-
mewhat more complicated: The large
orbit lengths are only observed if we
use the artificial discretization scheme
eq. (5). However, if we directly iterate
the tent map on an IBM machine, all
orbits again fall onto the fixed point
z* = —1, for the same reason as they
do for the binary shift map (see sec-
tion 1). From this point of view, we
can also define ¢ = 0 for z = 1. In
any case, we notice that at z = 1,
due to the piecewise linear properties
of the map, the random map assump-
tion is not valid anymore. This results
in the fact that the roundoff exponent
depends on details of the discretization
scheme and can take values different
from 1D(2). This complicated beha-
viour, as well as the possible break-
down of the random map assumption,
has been overlooked in [7]. We notice
that there are two critical” points,
where the roundoft scaling exponent
exhibits kind of a phase transition be-
haviour: At z = 2 it is not differen-
tiable with respect to z. This is just a
consequence of the known phase tran-
sition behaviour of the Renyi dimen-
sion D(2) [13,14,15]. Moreover, there
is another critical point z = 1 with dis-
continuous behaviour, which is a con-
sequence of the breakdown of the ran-
dom map assumption.
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