TREIZIEME COLLOQUE GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

DETECTION OF CHAOTIC BEHAVIOUR IN
SPEECH SIGNALS USING FRASER’S MUTUAL
INFORMATION ALGORITHM

Hans—Peter Bernhard and Gernot Kubin

Institut fiir Nachrichtentechnik und Hochfrequenztechmk
Technische Universitdt Wien,
Gusshausstrasse 25/389, A-1040 Vienna, Austria

Abstract

The apparent irregularity of speech signals is
generally considered the effect of pure ran-
domness or of time-varying control. This pa-
per presents a new explanation in terms of
deterministic chaos as the underlying model
of the temporal fine structure of speech.
Within this hypothesis, attractors of sus-
tained vowel articulations are reconstructed
using Takens’ theorem. Next, Fraser’s mu-
tual information algorithm is exploited to es-
timate the marginal redundancy R.7 of a sig-
nal sample given n past samples with delay
time T'. This results in the optimal choice
of the delay time T,,: (in the vicinity of 1
msec), a saturation value of 3 for the em-
bedding dimension and an estimate of the
information production rate of roughly one
bit per pitch period. This last result to-
gether with the independently measured cor-
relation dimension (between 1 and 2) corrob-
orate the chaos hypothesis for speech. The
general use of the implemented algorithms of
chaos-targetted analyses of natural signals is
possible.

1 Introduction and mo-
tivation

When dealing with speech it is often very
interesting to know which kind of signal it
1s. If signal processing algorithms are used
e.g. to reduce the bit rate for speech trans-
mission, they are targetted at the structure
of speech signals (formants, pitch period,
etc.). The observed irregularity of speech
signals 1s at present considered the effect of
pure randomness, or time-varying control by
the speaker. Therefore, it is of great in-
terest if there is a new explanation of the
speech signal’s nature. Is it possible that
speech signals are produced by a chaotic sys-
tem ?  This question has been addressed
only by a small number of investigations so
far [KM90, MY90, QH90, Tis90]. However,
the following points related to the speech
production mecharism suggest such an in-
terpretation:

1. If speech sounds are produced unvoiced
the primary source consists in turbulent
air flow originating at constrictions of
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the vocal tract [Fla72, pp. 53-58]. Tur-
bulent flow is one of the most exten-
sively studied patterns of chaotic be-
haviour in fluid mechanics [Tak81).

2. If speech sounds are produced wvoiced
there exists a nonlinear coupling be-
tween the sound source and the vo-
cal tract [Fla72, pp. 41-53, 246-259].
Schoentgen [Sch90] shows that only a
nonlinear model of the glottal waveform
renders its correct amplitude and fre-
quency dependence.

3. There is some experimental evidence
that speech production is not charac-
terized by linear propagation of acous-
tic waves but that the actual air stream
mechanisms are much more compli-
cated than generally believed [TT90].

To find out whether a signal can be re-
garded as chaotic or not we need a deci-
sion rule. The decision will be based on two
measurements, the information production
rate and the dimension of attractors in state
space. The dimension of the attractor indi-
cates chaos, if it is not an integer value. If
the information production rate is positive
it is related to a chaotic system.

2 Problem

Conventional analysis of a chaotic system is
based on a system that is fully known. It
1s possible to calculate the Ljapunov expo-
nents and to estimate the dimension. The
attractor can also be computed, because we
know the differential topology and the state
variables. |

In our problem we do not know the un-
derlying differential equations of the system.
We have only time series of recorded speech
signals available. It is a classical situation
for Takens’ theorem [Tak81], which allowes
to reconstruct an attractor from a single ob-
servation series. Let b(t) be the observation

and b(t + kT') the same but time-delayed

measurement where k is an integer and T

is the delay time. If delayed observations
are collected in a vector [b(t), 5(t+ T), b(t +
2T),...,5t + (n — 1)T)] an n-dimensional
embedding of the state space of the under-
lying system is reconstructed. Note: All
further calculations and considerations re-
fer to such reconstructed state spaces. It is
also important to mention that at this point
we have no idea about the required number
of state variables (reconstruction dimension)
and the delay time T'. We use a method
given by Fraser, to find these two important
parameters.

3 Determining recon-
struction dimension
and delay time

3.1 Theory

The method originates from -information
theory. Fraser shows in [FS86] that this

method is a reliable tool in determining the .

two parameters.
introduce the nomenclature
which follows closely the one given by Fraser:

First we

e b(t) stands for a sample value at time t.

e bI(t) denotes a vector with the index n
for the dimension and the delay time T
between the vector components.

BL(t) = [b(t),b(t+T),b(t+2T),...

bt + (n = 1)T)).

e As a concise notation we define 6% :=

BI(¢).

o B: Capital letters represent the ensem-

ble of b(¢).

e B(AT) specifies ensembles of b(t+AT).



e BT: Capital letters superscripted with
an arrow denote the ensemble of vectors

T (t).

3.1.1 The reconstruction dimension

Consider an n-dimensional vector ensemble
generated by observing one output of a sys-
tem. The vectors are constructed in the way
given by Takens. Accordingly, it is no prob-
lem to construct state spaces of any given
dimension. However, if a system has e g.
a 3-dimensional attractor, a 5-dimensional
state space does not contain more informa-
tion about the system than a 3-dimensional
state space. Based on this fact, it is pos-
sible to find out how many dimensions are
necessary to describe an attractor.

How do we proceed in practice? If the vec-
tor ensemble BI and the ensemble B(nT)

are known the redundancy R’ contained in
B(nT) can be calculated.

RT = I(B(nT), BT). 1)

I(.,.) denotes the mutual information be-
tween the ensemble B(nT') and the vector
ensemble B:{ . Starting with n = 1, the
quantity R;T 1s calculated for increasing n
until saturation occurs, see figure 1. Let ng
be the smallest index for which saturation is
reached, R:I;no indicates the redundancy in
the (n+1)st vector component. This compo-
nent 1s not required for reconstruction any-
more, it is totally irrelevant. In this curve
the maximum dimension of the attractor is
ng.

The saturation value R;?;m has another
important property; it is as high as the
signal-to-noise ratio (or, the ratio of the de-
terministic signal component to the noise
component ) expressed in bit. In general, this
is valid under the condition that the delay
time T — 0%. It is clear that for T = 0 a
singularity occurs with R.F = +o0.

o
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Figure 1: Schematic illustration of R,T as
a function of n for chaotic signals

3.1.2 The delay time

To estimate the optimum delay time 7' =
Topt, we let T vary. For n > ng we find
a curve of R;Tm as’ a function of T' which
is called the saturation line (see figure 2).
In this context, we use also the total redun-
dancy RY of the n-dimensional vector en-
semble (see below equ. (3). The average re-
dundancy per vector component is given by
RT divided by (n — 1). For the reconstruc-
tion of attractors we want to find a state
space which contains as much information
as possible.

It is impossible to find T, only by min-
imizing % because in chaotic systems a
steady information production takes place,
ie. RT — 0 as T — co . The saturation
line R;Tm as a function of T is, therefore,
decreasing with increasing T', too. This neg-
ative slope indicates chaotic behaviour and
is used for our decision chaotic/nonchaotic.

Hence we use a value of T' that leads to the
greatest distance between the curve of (—n}z_gl—)
and the saturation line. In other words:
The average redundancy per vector compo-
nent has to be the smallest with respect to
the maximal possible value (saturation line),
cf. figure 2.
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3.2 The Algorithm

The values of marginal redundancy are com-
puted by the mutual information,

R} = I(B(nT), BY). (2)

and the total redundancy as

(3)

We can also write

Rl =R, ~E] 4

The problems in determining RY are due
to the problem of estimating probability
density functions. We cannot determine
continuous functions because we would have
to consider an infinite number of continu-
ous observations. The probability density
function has to be approximated based on
histogram classes. We have to find out suit-
able sizes for these classes in state space. It
appears that no single size is best to deter-
mine the classes. If the size is fitted to the
local conditions it is optimal. To this end,
we define a class in the following way:

A range of signal space, which is con-
sidered as one class, possesses the property

that the observed vectors are uniformly dis-
tributed over the class. It means that in such
a class no further information is contained.

To find a partition of the state space into
classes we begin to divide it up into 2™ hy-
percubes where n is the number of dimen-
sions. Now, we proceed in that way for ev-
ery single hypercube and divide it into 2"
further hypercubes. We continue this proce-
dure recursively until a uniform distribution
is found in a hypercube which is then ac-
cepted as a class. We stop dividing up this
hypercube, but proceed in the other cubes
where a uniform distribution was not been
found yet. The distribution test has to be
very carefully implemented because, on the
one hand,no deterministic structure should
remain hidden (otherwise information would
be lost) and, on the other hand, random
fluctuations should not be mistaken as a sig-
nificant structure (otherwise the information
content would be overestimated).

3.2.1 The distribution test

1. Consider a single hypercube at divid-
ing depth m in the signal space. This
hypercube is divided up into 2™ fur-
ther cubes. Each of these hypercubes at
depth m + 1 is considered as one class
and is used in a chi-square test [Spi75,
p. 218] :

N; — sz)z
o B te)
=1 1

()

where

e N is the total number of vectors
in the hypercube at dividing depth
m.

e p, denotes the probability of the
test distribution of the class ¢
(i.e. the hypercube 7 at depth m +
1) and

e N, stands for the number of vec-
tors observed in the class z.



We are testing for a uniform distribu-
tion. For a single class ¢, the probability
1s

1

P = '2:- (6)

We replace p; in (5), hence

N
2" (N, - _n_)2
D D (7)

=1 —_—
2'n.
follows.

. The test is only good for large amounts
of data (N > 30). This property re-
duces the convergence of the algorithm.
The chi-square test should be matched
to our problem. Fraser uses a correction
of the test based on an assumed multi-
nomial distribution. For correction, the
calculated distribution is related to o}
[Spi75, p. 216], the variance of the muti-
nomial distribution. This allows a more
accurate determination of the distribu-
tion in areas with few observation vec-
tors.

. Another problematic point is the choice
of the confidence level of the null hy-
pothesis. It must be chosen right in be-
tween the two extreme cases, no struc-
ture will be detected or every single ob-
servation vector i1s accepted as a sub-
structure. In both cases wrong re-
sults occur. Fraser found in his exper-
iments an optimal confidence level of
20%. We have also experimented with
several confidence levels and found, like

Fraser, that 20% yields the best results.

. Including the variance o} for correction,
the following test is performed:

Tox’ < X300 (8)

If this inequality fails the distribution
1s not considered uniform. We conclude

that in the investigated cube a substruc-
ture exists.

The variance of the multinominal dis-
tribution is related to the number of

classes by
2" —1)2

The threshold value xZ, is usually
taken from tables [BS83]. The value
changes very much if the number of
classes increases. If the number of
classes is > 30, xZy, is calculated
from an approximation formula [BS83,

p. 690] .

5. The inequality (8) indicates whether a
substructure exists or not. To verify
this test another is done on the next
finer dividing depth of 4™ hypercubes.
If both inequalities are true the decision
for a uniform distribution is accepted.
If one test fails the division depth is in-
creased and the distribution test has to
be done in every of the 2" smaller hy-
percubes and so on.

3.2.2 The equations of the algorithm

We want to compute the total redundancies
RY based on the marginal redundancies de-
termined by (3). With (2) equation (3) can
be written as

R =S I(BGT), BY) (10)

=1
and so

B = 5 B(BGT) - H(BGT) | BT) (1)
~ 3" H(B(GT)) + H(BT) - H(FL,). (12)

=1

In equation (12) we see: the entropy
—~H(BT,,) in summation term (¢ = s) and

the entropy H(BT)) in the summation term

10OUO0
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(i = s+1) eliminate each other'and therefore
we get

- nfj H(B(:T)) — H(BT).

t=1

(13)

The entropy of an ensemble can be written
as

H(B(T)) ZPb (B (Kr))

lde (Rn(Km))- (14)

b; are the vector components in signal space
and R, defines a class in signal space in-
dexed by the m-tupel K,,,. The joint entropy
is defined similarly. This results in RZ as

B = =55 Py (B Ko )Py (Bon(K))

1=l K

+>° Py bR (Km))
i 4Py, s (Bn(Kn)).  (15)

From this, we get a compact equation for
the redundancy

= ; Pbl...bn(Rn(Km))

Py (B Kom))
Py (Bm(Km)) - - Pon(Bm(Km))

The marginal distributions P, have to
be transformed into uniform distributions so
that it is easier to calculate the several joint
probabilities. After doing so we see that the
marginal probability of one class is given at
the dividing depth m by (3)™. Now we are
allowed to separate the marginal distribu-

tion from the sum, therefore we can write

1d

(16)

RY = —mlg(%)%
> By (R ( K APy, o, (R (K )). (17)
Km

To find an efficient algorithm we pick
out one hypercube in dividing depth m.
This hypercube makes a contribution to
the redundancy RZ which we denote as

RT(R.(K)). In the following equations we
use the abbreviation P(R,,(K,,)) instead of
Poy o (Ren(Eom)).

RE(Ru( ) = ~mP(Rn( K NG5
+P(Bon (K )ldP(Rr(Kon)) (18)
At depth (m + 1) the hypercube R, (Kr,) is

divided up into 2™ cubes denoted by (m+1)-

tupels (K, 7). Each of these elements con-
tributes to RT(R..(K.,)):

Rf(RmH(Km,j)) -
~(m+ P (B (Ko, ()"
P (R (Ko AP (B (Ko ) (19)

So we can calculate the redundancy
RZ(R,.(K.,)) with the redundancies one di-

viding level deeper

Ry (B Ko )—ZRT(Rm+1( Km,3))- (20)

7=1

With (19) we can write
RL(Rm(Km)) =

211

5[ 4 PR (Ko, G )"

+P (R Koy NP (B (K, 1)) (21)

We simplify the terms
marginal distributions with

containing the

ik

ZP(RmH(Km,j)) =

j=1

P(Rn(Kn)  (22)

to get

R (Fn(Kn) = —mP(Rm(Km»ld(%)”—

P(Ron (K ))1d(5 >n+2[ (Bria (K, 5))

AP (R (o)

Now we see, stepping one dividing level
deeper the term P(Rp(Km))dP(Rm(Km))
in equation (18) is replaced by

~P(Ru (KA

(23)



+3° PR Ko )P (B Ko ).

=1
Hence we define a recursive function
l n
F*(Rn(Kn)) = —P(Rm(Km))ld(g)

£ 3 F(Ros (Ko ).

i=1

(24)

The recursion is performed until a uniform
distribution is reached. The final hypercube
is one class as defined before. The terminat-
ing equation for the recursion is similar to
(18) without the first expression of the sum
because the dividing level is contained in the
recursion. The terminating equation is

F*(Bm(Km)) =

PR (K )NdP(Bm(Kom)). (25)

The probability P{R.(K,)) can be ex-
pressed as a fraction of the observed state
vectors in the class N(R,(K,.)) over the to-
tal number of observations Ng.

P(Rp(Kn)) = Mmﬁ(.g@
From (24)
F(Bon(Km)) = —M%Eﬂld(%)n
+;Y_:1 F(Rpmy1(Km, 7)) (26)
and
F*(Rm(Km)) = |
z\r(zz,;v(ozrfm))1 dN(R,;v(OKm)) o

the factor -A}—O can be extracted because NLO is
contained in all terms of the complete recur-
sion. After that (27) may be written as

F*(Rm(Em)) = N(Rpn(Km)NAN(Rm(Km))
~N(Rpm (KN, (28)

We see that the second term does not de-
pend on the structure, it is a constant con-

tribution to the value of RZ

> N(Bm(Km))ldNo = NoldNo. (29)

Hence results a start equation considering
the factor T:'Z and (29).

R. =
YVI-F(RO(KO)) — 1dN, (30)
0
we proceed with‘ the recursion
F(Bm(Kmn)) =
2"
AN(Rn(Em)) + Y F(Rmi1(Em, 7)) (31)

=1

and terminate if there exists no substructure
with the terminating equation in every single
class.

F(Rm(Km)) =
N(Rm(Km)NAN (B (Ko ))-

This recursive algorithm is the basic form
to calculate the mutual information.

(32)

3.3 Implementation

The mutual information calculation is imple-
mented on a IBM PC-AT 286 and on a Mi-

croVax II minicomputer, respectively. ‘The

program is written in the programming lan-
guage C. We implemented the computation
of the recursions (30) to (32). The algo-
rithm 1s very time and memory consuming.
The third but most important point is that
it is very sensitive to calculation accuracy.
A disadvantage of Fraser’s implementation
of the algorithm is the huge amount of data
needed to analyse a system. Even with 1
million sample values from a measurement
the asymptotic saturation value is underes-
timated about 16%. We found out that this
problem is mostly due to numerical effects.
Next we optimized the implementation using
a precedence list of arithmetric operations
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(summation with both signums, multiplica-

‘tion, division). Even if a division is within a

summation 1t should be drawn out of sum-
mation by multiplication. We also have to
take care of multiplication overflow. If we or-
ganize the computations such that no over-
flow occurs a sizeable amount of precision is
lost even when using the IEEE floating point
format. From our implementation, we could
see that—when we process higher amounts
of data—it is impossible to achieve all of the
suggested numerical improvements simulta-
neously.

Last but not least the arithmetric unit is
a very important factor in our system. We
used the same software and the same num-
ber representation for our data on a PC with
arithmetric coprocessor and without. Still,
there appears a difference in the results of
up to 10%.

Comparison to Fraser’s implementa-
tion. The following values in percent are
referred to the respective asymptotic satu-
ration value of R;T>,w.

As mentioned before, Fraser reached with
1048576 = 1M samples only 16% accuracy,
see [Fra89, figure 6]. We analysed the same
quasiperiodic system and reached the satu-
ration value within £2%, moreover we used
only 32k = 32768 sample values. These re-
sults are obtained consistently over several
runs of the analysis program. This pro-
vides for data saving by a factor of 16. If in
Fraser’s implementation the number of sam-
ple values is reduced to 32k the error even
rises up to 26%.

The computation time needed in Fraser’s
and our implementations is approximately
equal for the same amount of data. We ex-
pect improvements by optimizing the algo-
rithm with respect to small sets of data.

4 Experiments with
speech signals

Our experiments focus on long sustained
vowels [a:, e, i:, o:, u:] embedded in carrier
sentences. They are spoken by three male
native speakers of German, of age 24 to 30.
We use sustained vowels to have sufficiently
long stationary data for our analysis. The
speech signals are recorded in an anechoic
chamber and digitized with 16 bit resolution
and 32 kHz sampling rate. All analyses are
done on manually selected stationary seg-
ments of 32768 samples (i.e. roughly one sec-
ond). There are several analysis tools avail-
able: the calculation of redundancy plots,
computation of correlation dimension and
visualization of three-dimensional plots of
attractors. Time consuming analyses were
done on a MicroVax II minicomputer.

4.1 Results

Figure 3 shows a three dimensional attractor
projected on a two dimensional plane. The
attractor correspondsto the vowel |i:] spoken
by speaker ‘F’and plotted with the optimum
delay time Top: = 0.94 msec. The graph dis-
plays three periodicities:

1. The trajectory almost replicates itself
after every pitch period.

2. The first formant frequency is roughly
twice the pitch frequency, so the overall
structure of the graph is similar to a
folded 8 (two cycles per ‘pitch orbit’)

3. The spectral peak related to the second
and third formant frequencies is about
23 times the pitch frequency, so there
are 23 small loops superimposed on the
pitch orbit.

We estimated also the correlation dimension
D of the attractor. The fractional value of
D = 1.7 was found.



The overall structure of the attractor is
maintained for other speakers. Figure 6 con-
tains the attractor of vowel [i:] by speaker
‘B’. The same looping structure as found for
the [i:] spoken by speaker ‘F’ characterizes
the attractor although the amplitude of the
second-formant loops is significantly reduced
due to the power differences in the respective
formants of the two speakers.

It is very important to use the optimum
delay time T,,:. We see in figure 4 again the
vowel [i:] by speaker ‘F’, but with another
delay time T' = 1.88 msec. The optimal T-
value produces results which are easier to in-
terprete and most interestingly, this value 1s
rather independent of the individual speaker
or vowel under consideration. The optimal
delay time is on the order of 1 msec.

The redundancy analysis of vowel [i:] by
speaker ‘F’ is shown in figure 7. On display
we have the marginal redundancies R’ for
n = 1,2,3 and T between 1 and 500 sam-
pling intervals (i.e. 0 to 15.6 msec). We
see, the curves saturate at ng = 2. So
we found the reconstruction dimension as
2 x (no — 1)+ 1 = 3. The slope of the sat-
uration line is A, = 0.94 bit over one pitch
period. This is the information production
rate of the underlying system.

Figures 5 and 8 show as a further exam-
ple the reconstructed attractor and the re-
dundancy plots for the vowel [a:] by speaker
‘G’. While differing slightly in the numeri-
cal values, the general picture found in the
previous figure is corroborated. For compar-
ison, the pertaining measurement values are
listed here: correlation dimension D = 1.5,
optimal delay-time T,,; = 0.94 msec, infor-
mation production rate h, = 0.9 bit over
one pitch period.

We give an overview of several of our mea-
surements and calculations in tables 1, 2,
and 3 where the SNR-value is obtained from

. IT
limy o+ RS, -

Table 1: VOWEL [i:] BY THREE SPEAKERS

[ Speaker H F ] B | G J
Pitch [Hz] 126 | 144 | 128
F 1 [Hz] 954 | 287 | 252
F 2 [Hz] 2330 | 2570 | 2450
SNR [dB] | 28.88 | 36.37 | 24.2
T lms] || 0.94 | 0.94 | 0.85
D 1.7 1.5 1.7
P (pig] | 094 | 1 | 06

Table 2: VOWEL [u:] BY THREE SPEAKERS

[ Speaker ” F l B 1 G J
Pitch [Hz] 126 | 146 | 128
SNR [dB] | 30.9 | 40.8 | 26.41
Topt [ms] 082 1 | 061

D 14 [ 127] 15

hy (s || 0-84 | 0.65 | 0.76

Table 3: VOWEL [a:] BY THREE SPEAKERS

I Speaker ” F l B | G ]
Pitch [Hz] [ 115 | 117 [ 126
SNR [dB] || 45.7 | 35.75 | 45.5
Tope [ms] 0.4 | 1.5 094

D 1.6 | 1.9 | 15
hy | preg) | 09 | 0.9 | 0.9

5 Conclusion

Although the experimental basis is still
rather limited, preliminary conclusions may
be drawn.

o The gross shape of the reconstructed
attractors can be interpreted in terms
of standard phonetic theory. Their
‘strangeness’, however, goes beyond
such theory which offers only explana-
tions in terms of randomness or time-
varying control.

avvv
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e The investigated vowels can be inter-
preted in terms of deterministic chaos.
This is supported through the positive
information production rate of roughly
one bit per pitch period and the frac-
tional value of the correlation dimension
between 1 and 2.

e As only sustained vowels with constant
pitch have been investigated the ob-
served chaotic behaviour can only be re-
lated to the temporal fine structure of
speech that changes from pitch period
to pitch period. No claim about the dy-
namic behaviour of spectral or articula-
tory parameters is made.

o In conclusion, if the results generalize to
a statistically relevant group of speakers
and to more speech sounds it should be
possible to achieve more natural sound-
ing speech synthesis by means of non-
linear signal models operating in the
chaotic regime.
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‘F’ (T’ = 1.88 msec).
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Figure 8: Marginal redundancy R
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Figure 5: Attractor of vowel [a:

‘G’ (T,opt = 0.94 msec



