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DYNAMIC BEHAVIOR IN A DIGITAL FILTER WITH SATURATION-TYPE
ADDER OVERFLOW CHARACTERISTIC
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Abstract - We present a detailed two-parameter analysis of be-
haviour of a second-order digital filter implemented with satura-
tion arithmetic. In our earlier studies we found that the parame-
ter plane is devided into Arnold tongues - regions within which
various types of periodic and quasiperiodic orbits exist. In this
study we present some new results showing the rules for creation
of fine structure in the parameter space. Apart from the Farey
rule confirmed for the changes of rotation numbers of orbits born
when varying one of filter parameters we found interesting rules
for the regions in which the problem reduces to a map of a po-
lygon into itself - the structure of Arnold tongues predetermines
the type of polygon. Furthermore we study bifurcation pheno-
mena taking place at the nodes of a particular type of Arnold
tongue (so-called "saussage structures”).

Introduction

Throughout this paper we will consider a second order digital
filter employing saturation arithmetic. The structure of such a
filter realised in the direct form and the characteristic of the
adder are shown in Fig.1. Equations describing its dynamics are
of the form :

1l

zi{k+ 1) z(k) (1)
z2(k + 1) Flbzi(k) + aza(k) + u(k)] (2)

Where : ¢, b€ R, F:R— R, F(o)=o0cfor |o| <1, Flo) =1
for o 2 1, F{o) = —1 for ¢ < —1 (Note that no quantisation ef-
fects are included - this characteristic takes into account overflow
only), u(k) - input signal for the filter. In the present study we
analyse the zero-input dynamic behavior of the filter (u(k) = 0).

Structure of the bifurcation plane
Arnold tongues

Dynamic behaviours of this class of systems have been stu-
died by a number of authors. Basic stability analysis can be
found in [5]. Willson [9] has shown that the nonlinear system
under consideration is asymptotically stable for all parameters a
and b within the linear stability triangle (F(z) = z) ie. b > —1,
b<a+1andb< —a+ 1 (this triangle is indicated in Fig.2.
In conclusions of their paper on chaos in digital filters Chua and
Lin {2] left several open problems concerning dynamic behaviors
in the filter with saturation arithmetic. Some of these problems
were addressed in our earlier studies [3]-[8]. We found that depen-
ding on the actual filter coefficient values a variety of oscillatory
orbits could exist. Pig. 2 shows regions of existence of principal
types of such orbits with different rotation numbers [4] on the
a — b parameter plane. OQutside the linear stability triangle one
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Fig. 1. Structure of the second order digital filter and overflow
characteristic of the accumulator.

can clearly see the Arnold tongue structure - the pricipal ”ton-
gues” 1/2 and 0/1 being the half- planes b > a+1 and b > —a+1
respectively. The quadrant delimited by b < a—1and b < —a—1
constitutes the 1/4 tongue. It is possible to show that the bor-
ders of 1/3 tongue asymptotically approach the borders of 1/2
and 1/4 tongue. In a similar way the curves delimiting the 1/6
tongue approach asymptotically the lines delimiting the 1/4 and
0/1 region. It is easy to notice the existence of an infinite number
of (shrinking by 1/2) half- circular regions (comp Fig.2) in which
the convergence towards periodic orbits is very slow and these
orbits could be detected only after a large number of iterates
(> 25000). °

Figure 3 shows in more detail the structure of the largest
half- circular region found in the earlier experiment. This time
we continued the experiment for 50000 iterates for cach chosen a
and b. Further extension of the observation interval above 50000
iterates reveals even finer structures of the Arnold’s tongues of
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so- called "saussage structure” and aparently infinite number of
curves defined by nodes of the tongues (points where the suc-
cessive "saussages” representing solutions of the same rotalion
number touch each- other). The "saussage” patiern has a self-
similar structure - repetes in every half- circular region. Below
specified accuracy level € for filter parameters it is not possible
sto specify what will be the observed system behaviour. The filter
exhibits "final state sensitivity” to parameter changes.

We noticed also in [8] that there are several regions in the
parameter space where more then one. stable orbits coexist. A
more detailed conclusion follows from recent analysis. There are
always:

-). single stable-unstable pair of orbits of (the same) even period,
-). two pairs of stable-unstable orbits of (equal) odd pariod.

TRIANGLE

Fig. 2. Two-parameter bifurcation diagram for the digital filter
employing saturation arithmetic. Asymptotic stability triangle
and principal Arnold tongues are shown.

b

RO

N
RN

Fig. 3. Detail of the largest half- circular region in the parameter
space revealing finer structure of the Arnold tongues - "saussage
structures”.

Devil’s staircase

We studied in detail how the rotation number of system orbits
changes when varying a for fixed b value. These diagrams reveal
typically the devil’s staircase structure as shown for example in
Fig.4. Rotation number is a monotonic continuous function with
plateaus of finite width at every rational value [1]. Zooming-in
this picture shows repeating finer structures of this kind (self-’
similarity). Changes of rotation numbers obey the Farey’s rule -
between two cycles of rotation numbers £ and L there is always

an orbit with rotation number 22
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Fig. 4. Change of rotation number as a function of the parameter
a (for fixed b) revealing typical devil’s staircase structure.

Relation between properties
of the one-dimensional map
and the Arnold tongues structure

In our recent paper [7] we proved several theorems concer-
ning invariant sets and limit sets of system trajectories in various
parameter ranges. In particular we have shown that for the pa-
rameters in the set :

Q={(a,b)e R:b< ~1,|b+a|<lor |b—a| <1}

(see Fig. 2) there exists a one- dimensional invariant set attrac-
ting all system trajectories and the study of dynamics of our
system can be reduced to analysis of a map of a polygon into
itself (homeomorphic with a map of a circle). In the limit case
number of sides goes to infinity. This one- dimensional map is
non- decreasing which implies existence and uniqueness of a rota-
tion number for any parameters a and b chosen from the specified -
range {see [4]). Thus we excluded the possibility of overlaping
of the Arnold tongues within the sets ) and excludes possibility
of existence of chaotic motion within this range of parameters.
However that it is possible to tune the filter parameters in such
a way that oscillations of any chosen period can be generated.
Studying the complexity of the invariant sets we were able to
find in the parameter space regions of existence particular types
of the polygons with prescribed number of sides. Comparison of
the Arnold tongues diagram and the regions of existence of inva-
riant polygons diagram (Fig.5) suggests that in the region below
the self-similar circles the number of sides of invariant polygons
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Fig. 5. Comparison of a magnified fragment of the Arnold tongues diagram and the regions of

existence of invariant polygons diagram. Orbits of the same rotation number exist in distinct
invariant sets.

just change by 2 in the regions touching each-other. However
depending on the choice of parameters the limit sets are varied
within a chosen polygon type. Furthermore it is possible to find
the rule for the number of sides of the invariant polygon in a
considered region within the "circular” range.

Note that the ¢ — th curve I'; delimiting chosen ¢ —th "circu-
lar”) region has always both ends on the line = —1 and at each
of these points and Arnold tongue has its origin - thus at the
ends of any delimiting curves two distinct Arnold tongues origi-
nate eg. the 2 and I tongues . Then in the region delimited by I';
there exists an invariant polygon with ¢ + s sides. Note however
that depending on the actual coefficient values there are limit
sets of the same kind (period) in invariant sets of distinct types
eg. stable period-nine orbit on a hexagon, decagon etc. Nume-
rical experiments have indicated that despite the same rotation
number orbits existing in different parts of chosen "saussage”
structure are different. In the following section we will look into
some detail of bifurcation phenomena encountered at the nodes
of "saussages”.

Bifurcation phenomena at the nodes
of Arnold tongues

As a typical example let us consider a % Arnold tongue shown
in detail in Fig.6. It has the "saussage” structure composed of
four sections. Each section belongs to the region of the a—b plane
with different invariant polygon (6, 10, 14 etc. sides) - compare
Fig.5. For the purpose of study of bifurcation phenomena at the
nodes of this Arnold tongue we constructed a specific bifurcation
diagram changing both a and b in along lines connecting the
nodes. The resulting diagram is shown in Fig.7.

In Fig.7 both stable and unstable orbits are indicated. Loo-
king into details reveals that stable orbits existing within chosen
subregion destabilise when crossing to the next one through the
node of the "saussage” and at the same time new stable orbits of

the same rotation number are born. We could call such phenome-
non stability exchange. To show that the orbits in each section of
the "saussage” are different we found the symbolic characterisa-

tion of each of them. Defining the symbol sequences as proposed
in [2] :

—1, ifbzy(k)+axe(k) 21
se=1< 1, if bzy(k) + aza(k) < —1 (3)
0, otherwise

stable orbits existing in each section (starting from the line b =
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Fig. 6. The  Arnold tongue - "saussage” structure composed of
four sections. The curves delimit regions of existence of distinct
types of invariant polygons.
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Fig. 7. Evolution of the period-9 orbits when changing parame-
ters a and b within the 2 Arnold tongue. Both stable and unstable
orbits are indicated. Note the "jumps” when crossing the nodes
of the saussage structure.

—1) of the 2 Arnold tongue are characterised by the following
symbol sequences:

(1,0,0,0,0,0,0,0,0) and (—1,0,0,0,90,0,0,0,0) (these orbits exist
at the origin of the tongue for @ = 2cos¥ = 0.3473, b= —1)
(1,0,-1,0,0,0,0,0,0) and (-1,0,1,0,0,0,0,0,0)
(1,0,-1,0,1,0,0,0,0) and (-1,0,1,0,-1,0,0,0,0)
(1,0,-1,0,1,0,-1,0,0) and (-1,0,1,0,-1,0,1,0,0)
(1,0,-1,0,1,0,-1,-1,0) and (-1,0,1,0,-1,0,1,1,0)

At each bifurcation point one non-zero symbol is added in the
sequence the length of the sequence (9) remains unchanged.

Conclusions

Our studies revealed some interesting dynamic behaviors in
the filter associated with the nonlinear characteristic of the ad-
der. The structure of the bifurcation parameter plane is compo-
sed of self- similar regions which we called "saussage structures”.
Furthermore the regions of existence of periodic orbits charac-
terised by different rotation numbers form a fine Arnold tongue
structure. It is possible to show that the tongues do not over-
lap and the filter can not exhibit chaotic trajectories. Within the
tongues characterised by rational rotation numbers with even de-
nominator there exist always single periodic orbits while in the
case of odd denominator stable periodic orbits always come in
pairs. One-parameter bifurcation diagrams reveal typical devil’s
staircase route of changes of rotation numbers when varying the
bifurcation parameter. There is an interesting relation between
properties of the one dimensional map describing the system’s
behavior and structure of the bifurcation parameter plane. The
complexity of the polygon maped is related to denominators of
rotation numbers in the tongues associated with considered re-
gion.

{2] L.0.Chua,

Bifurcation phenomena within the Arnold tongues encoun-
tered when passing from one "saussage” to the following one
through the nodes are of the stability exchange type. Symbol se-
quences characterising the orbits differ by one non-zero symbol
when passing between "saussages”.
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