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RESUME

A new edge-based algorithm is presented for segmenting
textured images modeled by Gaussian Markov Random Fields
(GMRF). Two main steps are involved in the edge detection
process. The first is the detection step whose main function is to
have a high detection rate for all possible non-edge pixels in the
image. This detection is based on a generalized pseudo-likelihood
ratio test which is used instead of a generalized likelihood ratio test
because of its computational simplicity. The output of the detection
step is an image which consist of regions separated by fat or thick
edges (ambiguity region). To each connected region a label is
allocated. The second step involves the localization of the edges.
For each connected labeled region obtained from step 1, the
GMREF parameters are estimated and stored. To locate an edge
between any two regions, we consider the edge regions found in
step 1, and find the response with the highest likelihood in the
ambiguity region. The method is illustrated on both synthesized
textured images and images of outdoor natural scenes.

I. Introduction

Edge detection is an important problem in image
segmentation. The traditional methods of edge detection based on
the sudden changes in intensity fail in the case of textured images,
as they can not differentiate between a “micro-edge” caused by the
texture from the “macro-edge” which constitutes a boundary
between two textured regions.

Edge-based segmentation of textured images has not been
extensively treated. Kashyap and Eom [1] proposed an edge
detection algorithm that deals with textured images. First all sharp
edges are found, then they are tested as true egdes or just micro
edges caused by the texture. Khotanzad and Chen [2] used a
simultaneous autoregressive process (SAR) to model the textures,
and used a sobel edge operator based on the estimates for the
model parameters.

In this paper, we present a new edge detection algorithm
which is capable of dealing with both “intensity edges” and
“texture edges”. We assume here the textured images are modeled
by Gaussian Markov Random Fields (GMRF's). The
generalization to other stochastic models, such as 2-D causal
autoregressive models, simultaneous autoregressive models, etc.,
is straight forward.

II. Gaussian Markov Random Fields (GMRF)

Let g,(m,n) be the intensity at pixel r = (m, n), and let g(m, n)
= go(m,n) -1, with p = E{g,(m,n)}. The GMREF is a noncausal
2D autoregressive process described by the following difference
equation

g() = 2 By )+ n(r) @D
ve Dp
where By = B.v) » and D}, is a neighbor set given by
Dp={v=(k1) :IIr-vllZSNp ,and v#r}  (2.2)
where p is the order of the process and N the maximum square

of the distance from point r to v. {n(r)} is a Gaussian noise
sequence with zero mean and autocorrelation function given by

o2, ifv=r
Ry(r,v)=  -0?Bry, ifveD,
0, otherwise 2.3)

The power spectral density associated with g(m,n) is given by [3]

(@, Q) =02/ [1-2 By yexp (-] (k @ +19)}] 24
k,De Dp
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The GMRF is parametrized by a parameter set = (it, 62, B), with

B = (B0, Bo1, P11, B1-1. --) where the number of B parameters
is determined by the order p of the model.

Let g, = {go(m, n), -N/2 < m,n < N/2 -1} be an NxN image
obtained from the infinite extent GMRF g,(m,n). The joint density
function of g, is

p(gol) = 2no?) M2 Vdet([y])
exp(-(1126%) (g- k)t [w] (g- uD} (2.5)
where U = 1 is the mean vector, (X] is the covariance matrix of
g, [Z]'1= [y] /62, M = N2, and ' stands for the transpose

operation. Assuming a toroidal lattice results into a random field
which is wrapped around in a torus structure {4, 5]. and a

covariance matrix [Z] that is circulant. Let G = {G(m, n), -N/2 <

m,n £ N/2 -1} be the 2D N-point discrete Fourier transform of g,
where g = g, - U. G(m, n) is defined as

N2-1 N2-1
Gimm =% X gk Dexp{-j@uN) [mk+nl]} (2.6)
k=-N/2 1=-N/2

G is a white (used here in the context of having the G(m, n)
variables of the random field G being statistically independent)
zero mean Gaussian field (see [4, 5]), with the variance of G(m,

n) being N2 S(m, n), where S(m, n) is obtained from S$(Q;, Q)
in (2.4) by evaluating it at Q;=2nm/N , and £, =2rn /N, and is
given by
S(myn) =62/ [1-2 X By cos{ @n/N) [mk +nl]}]2.7)
&k, DeDy
where D', is non-symmetric half plane neighborhood set
associated the set Dp in (2.2). p(glY) is given by
p(gly) = T1(1/2xN2S(m,n)) 1 2exp{-X IG(m,n)I2 / 2N2S(m,n) }
-N/2 <m,n < N/2 -1 -N/2 < m,n € N/2-1 (2.8)
Finally, under a torus structure {5]
det([y]) = T (¢(m, n) / N?) 2.9)
-N2<£mpn<N/2-1

with ¢(m,n) given as

o(m,n) N 1- 2 2y cos{ @n/MN) [mk +n1]}]  (2.10)
(k,DeDy

11.1 Sufficient Statistics for the GMRF Model

The class of GMRF introduced belongs to the exponential type
family, and therefore their likelihood function is factorizable in the
Neyman-Fisher sense [6, 7], i.e.,

p(gly) =p(g m) =h(g) exp{Tin+ c(m)} (2.11)
where h(g) = 1; n is the (2p+2) dimensional natural parameter
vector (1, Ngg» N10> Mo1> N11> N1,-1» ) = (UNZ/62[1-2B1¢-
2Bo1-2B11-2B1 ~1----1, -N2/262, N2B; /02, N2Bg1/02, N2By /02,

N2B1,.4/62, .3 T = (Ty, Tp, .., Topsp) = (¥, R¥go, R¥yy,
R*p1, R*11, R*) 1,..) is the set of minimal sufficient statistics

with p* and R*, , being the sample mean and sample
autocorrelation in the (m, n) direction, respectively; and

cm) = 0.5 log{det{[Z]1}}+n12/ 4 Moo+ N1o+ Nor+ 11
+ T]l’_1+ ] (2.12)
Under a torus assumption det{[Z]-1} is given as
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0.5 log{det{[Z]-1})= -N2log{N2/2}

+0.5 2 log{- 2 ny jcos{(2n /N) [mk+ nl]} }
-N/2gm,n SN/2 -1 (k, 1) e D'pU (0,0) (2.13)

Since c(n) has partial derivatives of all orders, it follows that [7]

E{T;} = - dc(m) /o, i =1, 2,.., 2p+2 (2.14)
cov(Tj, Tj} =- %c(m) /om; om, 1, = 1, 2,.,, 2p+2  (2.15)
E{T}= (4, Roo, R10, Ro1» R11, Ry 1, - (2.16)
where
Ryg=p?+Cy
and
Cy, = (I/N?) 2 Sjcos{(2m /N) [ik+ jlI} (2.17)
N/2<i, jSNJ2 -1
var{{t*} and cov{R*y |, u*} are given respectively as
var{|*} = Sp/ N2 (2.18)
cov{R*y |, u*} = 2uSgg / N2 (2.19

Finally, cov{T;, Tj} is given as

COV{R*k)I, R*m’n]= (2/N2)[2L12800
+ (1/N2)Z(Si’j)2cos{(27c /NYik+ jl1}cos{(2r /N) [im+in]}]
-N/2<1,jEN/2 -1 (2.20)
Another possible set of sufficient statistics is the set T' = (u*,
C*00» C*10» C*01- C*11, C*1 1, -..), where C¥y 1 is the sample
autocovariance in the (k,1) direction.
E(C*p}= G- (NDX Cpp = Gy - (/NDSgg  (2.21)
-N/2€m,n<N/2 -1
where Cy | is given in (2.17). Moreover,
cov{CH¢ 1, u*} = 0 (2.22)
where Cpy p, is expressed in terms of the S;j's as in (2.17). Finally,
COV{C*k)l, C*m’n} = 2(500/N2)2
+ 2/NHX(S; 2eos{ (2 /N)[ik+ jl] Jeos{(2r /N)[im+jn]}
-N/2<1,jgNf2 -1 (2.23)
From (2.21) we can see that C* ; is asymptotically unbiased. In
[9] T = (Ll*, C*Oo, C*lo, C*Ol’ C*ll’ C*l,-l’ ) is shown to be
asymptotically Gaussian with mean vector E{T'}= pp = (i, Cg -
(1/N2)Sg0, C1g- (1/N2)Sgq, Coy - (1/N2)Sgg, Ci1 - (1I/N2)Sg0,

Cl,-l - (1/N2)SOO, ...) and covariance matrix [Z1] having its
elements given in (2.18), (2.22), and (2.23).

I1.3 Maximum Likelihood Parameter Estimation
The ML estimates for the parameters can be obtained by either

maximizing the In{p(gl y)}using (2.8) as reported in [5], or
maximizing (2.11). This involves a nonlinear maximization
process such as Newton-Raphson. In terms of the sufficient

statistics, the MLE for o2 is given by
o2% = R¥pg - 2 T B¥ Ry
k, e D'p
The ML for B the is obtained by maximizing

max {ZZ In{¢(mm} - N2In{1-25 B p*y}} (2.25)
B 0<mnsN-1 k.1 eDYp

where ¢(m,n) is given in (2.10) and p*y, is defined as

p*kl = R*k] /R*OO (226)
The MLE is unique [7]. The parameters should satisfy the
following stability condition to correspond to a GMRF

ZZBU cos{(2m N)[mk + nl}}<1, for -N/2 <m, n < N/2 -1
& heDp (227

(2.24)

III. Pseudo-Likelihood Function
The pseudo-likelihood function is the product of the
conditional likelihoods of the image intensity data over the entire

image lattice Q2 of size NxN, i.e.,
Pl(gh) = TT p(g(n)l gy, ) =TT p(g(r)l g(r), v e Dy, )
re 3.1
where g - is the data vector not including the data at pixel r. In (8]

it is shown that the Kullback-Leibler information (KLI) [7] based
on pseudo-likelihood function is unbiased, i.e.,

E { log {Pigh) / Pi(gly, ) } } < 0 (3.2)

where Yirue is the true parameter set. Moreover, it is shown [8] that
the p(KLI > 0) — 0 as N— o, i.e.,
p(lim In{PL(gh) / Plgly, ) } >1) =0

N—> oo

(3.3)

Pseudo-likelihood parameters estimates are obtained by
maximizing (3.1). They were shown [5] to be consistent
estimators and asymptotically efficient. The pseudo-likelihood

estimator for 3 is a least square type estimator and takes the form
(51
B = [ZXTrXm]T ZXwem
reQ reQd
where X(r) = (g(-1, j) + g(i+1, j), g(, j-1) + g, j+1), ...). The
pseudo-likelihood for o2 is given by
o2 = (1/N2) 2 [g(r) - BpX()]?
reQ)
The pseudo-likelihood estimate for the parameter vector 7 is

denoted as Yp = (02Pl , BPI). The drawback associated with the

pseudo-likelihood estimators is that they are not guaranteed to
satisfy the stability condition in (2.27). This condition is necessary
for the MRF to be Gaussian.

r=@Gj) G4

(3.5)

IV. Detection of Non-Edge Pixels
Two main steps are involved in our edge detection scheme.
The first is the detection-step whose main function is to have a
high detection rate for all possible non-edge pixels in the image.
To detect a non-edge at pixel (i, j), we have considered the
following two groups of analysis edge detector windows centered
at pixel (i, j) shown in Figure 1.

R R R
R 1 Ry R-l
Horizontal Vertical Diagonal 1 Diagonal 2
Analysis windows
Figure 1

Let Ry(k) and R_j(k) denote the set of pixels labelled 1 and -1,
respectively, for window k ( k = horizontal, vertical, diagonal 1,
diagonal 2). Let M; and M_; (M; = M_;) be the number of pixels
in regions R (k) and R_;(k), respectively, and M = M; +M, =
2M;. Let H,, be the hypothesis that there is no edge (at pixel (i, j),
and Hj be the hypothesis that there is edge at pixel (i, j).

Remark :
Analysis windows with different directions could also be
used.

IV.1 Likelihood Ratio Test
Let gy(k) and g_y(k) be the data in regions R(k) and R_;(k),
respectively. Hg translates into gy (k) and g_4(k) having the same

distributions, i.e., ¥; = ¥.1 = Y,, and Hj translates to vy; # ¥.;. The
generalized likelihood ratio test [7] statistic is

L(g1(0.g.10)=In{ plg1 (0l *)p(g.10M.1*)/

P(g1(R), 8100 179 } @.1
where y1* and .1 * are the MLE of y based on the data g;(k) and
g.1(k), respectively; and ¥, * is the MLE of based on the data g, (k)
= g1(k) U g_1(k). Tt can be easily shown that

Plgck) 1Y% ) = 2ro*2)y M2 (det [y* )Y2 exp{-M./2},
c=1,-1 (4.2)

P(go(k) 1 Yo* ) = 2mo*2) M2 (det [y#,] )12 exp{-M/ﬁ ,

Hence (4.1) becomes
L(g1(k),g1(k)) = 1/2In{det{[y* 1) det{ [y*{1}/det([y*,1} }
+ M2 log(o,*4/01%261%2)  (4.4)
For large M, under H,, L(g k), g.1(k)) in (4.1) has a x2
distribution with 2p+2 degrees of freedom [7].
H, is rejected if
log{det{[y* 1}det{[y* 1]} / det{[y*,]} }
+ M In{o *4/ o;*2 O'j*z} > &, (4.3)
with & chosen such that the size of the test is o. Under a torus



lattice approximation, det{[y*.}, c =1, j, is given in (2.9), where
$*c(m, n) is given in (2.10) with B¢* | replacing By in (2.10),
and M, = NZ ; whereas det{[w*,] is given in (2.9), with ¢*o(m,
n) given in (2.10) with 0%, | replacing By ; in (2.10), and M =
N2, Bo*, | is the MLE for B0, | obtained from the data g (k) =
g0 U g (k).

The only drawback associated with the generalized likelihood

ratio test is the fact that the MLE for vy, ¥.1 , and 7Y, are to be
evaluated, and this requires a time-consuming nonlinear hill-
climbing technique. Computationally simpler alternatives are
presented next.
Remark :

The pseudo-likelihood estimators can not be used in the
likelihood ratio test as they are not guaranteed to satisfy the
stability condition in (2.27).

IV.2 Generalized Pseudo-Likelihood Ratio Test
As an alternative to the the likelihood ratio test, we use the
following psendo-likelihood ratio test

PI(g;(K), .1(K)= P11y ;) PIE.1(6) Hpy 1) /
Pl(gy (), £.1(0)p ) (4.6)
Taking the log of (4.9) yields )

PL(g1(k), g.1(k)) = N/2 ln{cpl’oti/ opuz GPL_IZ} 4.
The success of such a test is due to the fact that the pseudo-
likelihood function is unbiased, and that the p(KLI > 0) — 0 as
N— oo (see Section IL3). For large N, under H,, op 2/ 0p)
Op, _; has an F distribution, i.e., (Op 2/ Op ; Op ) F(2p+2,
2p+2).

H, is rejected if

{Op102/ Op11 Opyg) > G

with &, chosen such that the size of the test is o

(4.8)

V. Edge Localization

The output of the detection step above is an image which
consist of regions separated by fat or thick edges (ambiguity
region). To each connected region a label is allocated. For each
labelled region we estimate the parameters of the GMRF
associated with that region. The MLE are now obtained via (2.27)
and (2.28), but with the R¥;'s computed based on summing
product terms of the form g(m, n)g(m+ k, n + 1) with both points
belonging to the region.

V.1 Maximum Likelihood Edge Location Estimation

To locate an edge between any two regions, we consider the
edge regions found in step 1, and find the strongest response (the
response with the highest likelihood) associated with the edge
location in the ambiguity region. For example, suppose we
consider the situation shown in Figure 2. The two non-edge

regions are denoted by Ry and Ry, respectively. Let % (N*,), m

=1, 1I, be the estimated GMRF parameters associated with
regions R and Ry, respectively.

To detect the vertical edge in the ambiguity region associated
with the ith row, we compute the likelihood functions associated
with all the possible locations of the vertical edge in the ith row
which are in the ambiguity region. If the ambiguity region
associated with the ith row has a width of W pixels, with j setto 0
and W at the begining and end of the ambiguity region, there will
be (W+1) such computations. For each possible (i, j) location of
the edge, we use an analysis window of size L such as the one
shown in Figure 2 centered at the (i, j) point.

We compute the sufficient statistics vector T'1(i, j) and T' (i,
j) based on the data in regions Ry(k) and R_j(k), respectively.
Using (2.11) the log likelihood of the data in regions Ry(k) and
R_1(k) centered at point (i, j) reduces to

T'1( DT ¥+ e*p + TG DT n*p + e*) (.1
We slide the window from one end of the ambiguity region to the
other end, i.e, j = 0 to W. The location of the edge in the
ambiguity region is the one for which (5.1) is a maximum. The
decision rule is

max{T'y@, HT 0¥+ TG, P nsy

J

(5.2)

H - .
/ i ~
Analysis / Ambiguity True
Window Region Boundary
Figure 2

Remark : The ML is biased for small size analysis windows (see
experiment Section).

V.2 Localization of the Edge by Maximizing the SNR

An alternative to the ML edge location in Section V.1 is based
on maximizing the likelihood function associated with the
difference AT(, j) = (T"1(, j) - T'1(4, ). Let p*p(m) and
[Z*p(m)], m=1,1I, be the estimated mean and covariance matrix
associated with the sufficient statistics T" associated with regions
Ry and Ry, respectively. These are computed using (2.21), (2.22),
and (2.23). Using the Gaussian approximation for the probability
density function of the sufficient statistics, the edge location is
achieved by the following ML maximization rule

max { p(AT'G, Plapy, (AZpD) } (5.3)
0<j<W
where
App = p*p(D) - w*p(ID (5.4)
an
[AZ1] = [S*p(D)+[E5p(D)] 5.5)

(5.3) reduces to

max { (AT'G, j) - Ap)HAZ L HAT'G, §) - Apr)} (5.6)

0j<W

The decision rule in (5.3) was found to perform better than its
counterpart in (5.2) for analysis windows which are of small sizes
(see experiment section).
Remark :

The decision rule is maximizing the between-to-within
variation, which is a measure of the signal-to-noise ratio.

IV. Experiments

Experiments have been conducted on both natural and
synthetic scenes images. Figure 3a shows a synthesized image
which consists of 4 regions which are realizations of 4 different
second order GMRF's. The output of the detection step is shown
in Figure 3b. In Figure 3c each connected non-edge region has
been allocated a label (a constant shade of gray) and the edge-
ambiguity region is displayed in white. For each labelled region
the GMRF parameters were estimated. Based on these estimated
parameters, the output of the localization step is shown in Figure
3d. The localization step is based on the decision rule outlined in
Section V.2.

The same steps are shown for two real images. The first taken
in our Laboratory is an image of three different fabrics. The
original image and the different results of the segmentation process
are shown in Figures 4a-4d. Fourth order GMRF's were used
here. The second image is that of outdoor scene which consists of
two regions : earth region, and grass region. The results are
shown in Figures 5a-3d.

In all the three images, the results were good, and most edges
between regions were properly localized to within a pixel of the
true boundary. Moreover, most the “micro-edges” caused by the
texture have been neglected.

We finally compare the performance of the decision rules in
Section V.1 and V.2 as a function of analysis window size for the
example shown in Figure 6. Only a horizontal analysis window
was used here. The output of the decision in (5.2) for three
analysis windows of sizes 20x16, 40x30, and 60x40,
respectively, are shown in Figures 7a, 7b, and 7c. This is to be
contrasted with the outputs using the decision rule in (5.6), which
are shown in Figures 8a, 8b, and 8c.
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Figure 3a

Figure 4a Figure 4b

Figure 5a

Figure 6b
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