TREIZIEME COLLOQUE:GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

A Statistical Framework for Change Detection in Image Sequences

Til Aach?, André Kaup!, and Rudolf Mester?

Mnstitute for Communication Engineering, Aachen University of Technology (RWTH),
D-5100 Aachen, Germany

2Robert Bosch GmbH, Dept. C/FOH, D-3200 Hildesheim, Germany

Résumé

Afin d’améliorer la fiabilité dans la détection des change-
ments dans les séquences d’images, nous décrivons deux
méthodes légérement différentes pour la détection des chan-
gements basées sur I’analyse des résultats statistiques. Cela
nous permet de spécifier des seuils de décision qui sont op-
timales tout en respectant les probabilités. d’erreur. Nous
décrivons ensuite une méthode basées sur les champs Mar-
koviens pour un traitement plus fin des résultats de la
détection, méthode qui réalise trois objectifs: elle augmente
la précision sur les frontiéres entre les régions changées et
celles inchangées, elle lisse de fagon adaptive ces frontieres
par regularisation et enfin elle élimine les régions de faible
taille qui sont suceptibles de provenir d’erreurs de décision.

1 Introduction

The detection of image areas with significant intensity chan-
ges between two subsequent frames of a sequence is impor-
tant in image coding [2, 7, 13] as well as in image analy-
sis [6, 9]. In coding applications, change detection is used
e.g. by region oriented strategies [7, 10], while in dynamic
scene analysis, it serves e.g. for moving object detection and
tracking.

Here, we focus on algorithms which evaluate the grey le-
vel difference image between two frames to be processed, and
which are in particular wide use in coding applications. At
each pixel site, the local sum (or mean) of absolute diffe-
rences as computed inside a small measurement window is
compared against a threshold. Whenever the threshold is
exceeded, the corresponding site is marked as changed.
The crucial point here is the determination of optimal de-
cision thresholds allowing for minimal error probabilities.
However, these thresholds are often arrived at heuristically
(e.g. [7, 13)).

In this contribution, we describe a method for determining
decision thresholds by relating them to the false alarm rate
associated with change detection. We obtain the thresholds
by hypothesis testing, in particular, by significance tests.
Two slightly different approaches will be analyzed: for the
first one, the camera noise is assumed as additive, white
and gaussian. It is shown that in this case, the local sum
of squared normalized grey value differences is a sufficient
statistic. For the hypothesis that no change occurs inside
the local window (null hypothesis Hy), the probability den-
sity function (pdf) of this test statistic can be stated, and
a significance test can thus be performed. The second ap
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to error probability. We then describe a Markov random
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it adaptively smoothes these boundaries by regularization,
and it eliminates small regions in case they are likely to be
caused by decision errors.

proach is based on regarding the already mentioned and wi-
dely used test statistic — namely, the local sum of absolute
differences — as the sufficient statistic. Tracking now our
previous considerations backwards, we arrive at a model for
the camera noise which is implicitly assumed when using
this statistic. This enables us to ascertain its pdf, and this
in turn leads again to a significance test.

The described reasoning relates our approach to the proposal
of [9], which also employs significance tests. However, their
test statistic is quite different from ours. Without taking
advantage of a difference image, the approach of [9] compu-
tes least-squares fitted biquadratic polynomials to the image
data in test areas of two subsequent frames, and performs
the decision by a generalized likelihood ratio test of the re-
sidual error. Their approach thus relies on the assumption
that the texture content of each test area can be captured
by a biquadratic polynomial, because it is only then that
the residual error in unchanged areas may be assumed as
being solely caused by camera noise. An approach via the
difference image avoids this assumption, since the difference
image is free of texture content in unchanged areas, thus ren-
dering a texture model unnecessary. The second advantage
of difference image based methods is that computationally’
rather complex polynomial approximations are not required.

Finally, we describe a method for refining change detection
results which follows three objectives: first, it enhances the
accuracy of the localization of the boundaries between chan-
ged and unchanged regions, thus compensating for blurring
effects generally affiliated with the use of measurement win-
dows. Secondly, it smoothes these boundaries. Thirdly, it
eliminates small, isolated spots if they are likely to be due to
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decision errors. In contrast to other postprocessing methods
like median filtering and/or elimination of small regions with
size below a given threshold, the proposed method does not
ignore the input grey value images.

2 Change Detection Using a Suffi-
cient Statistic

2.1 Gaussian Camera Noise

We start with the grey level difference image D = {d}}, with
dr = y1(k) — ya(k), between two pictures Y7 = {y;(k)} and
Y2 = {y2(k)}. Under the hypothesis that no change occurs
at location k, the corresponding difference dj obeys a zero
mean Gaussian distribution, i.e. p(dg|Hg) = N(0,0). Since
the camera noise is uncorrelated between different frames,
the variance o2 is equal to twice the variance of the assu-
med Gaussian camera noise distribution.

It is evident that p(dx|Ho) depends only on the squared ratio
of the grey level difference normalized with its standard de-
viation, that is, on (dx/o)?. Since the camera noise is white,
the joint pdf for all pixel sites inside the local measurement
window w; depends only on the sum

Bi= Y%y M

kcw;

where ¢ is the center pixel of w;. Thus, the decision which
label to assign to pixel ¢ may be based solely on this sta-
tistic, which is therefore termed sufficient statistic (cf. [4]).
The unknown parameter o can be estimated off-line for the
used camera system, or recursively on-line from unchanged
regions while working on a sequence as described in [13, p.
202].

Under the assumption that there occurs no change inside
the window when centered at location ¢, the normalized dif-
ferences di /o each obey a zero mean Gaussian distribution
N(0,1) with variance 1. Thus, the sum A; obeys a x*-
distribution with as many degrees of freedom as there are
pixels inside the window. With the pdf p(z}.—ngo) known,
the decision between ’changed’ and 'unchanged’ can be ar-
rived at by a significance test [4, 12]. For this purpose, we
specify a significance level a, and compute the corresponding
threshold t4 according to

o = Prob (K.->to, IHo) . (2)

Whenever A; exceeds t4, the corresponding pixel i is mar-
ked as changed. The significance level a hence is the type I
error probability, i.e. te probability to reject Hy although it
is true.

This detection method belongs to the so-called uniformly
most powerful tests (one-sided in this case). Hence, once an
acceptable type I error probability @ has been chosen, it is
guaranteed that the unknown type II error probability, i.e.
the probability to miss actually changed pixels, is kept to a
minimum.

Fig. 2 shows change masks obtained from a head & shoul-
ders sequence of which Fig. 1 depicts two frames. The local
square sum inside a 5 X 5-window was used in connection
with & = 107°, resulting in t, = 74.5 (left), and o = 102,
resulting in ¢, = 44.3 (right).
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Figure 1: Original frames (256 x 256 pel, see text).

Figure 2: Change masks for Fig. 1 (see text).

2.2 Sum of absolute differences as sufficient
statistic

In this section, we briefly derive a significance test assuming
that the local sum of absolute difference values constitutes a
sufficient test statistic. More precisely, we consider the test

statistic
A; = Z7|dk| ) (3)
kEw;
where 7! is a normalization parameter which will be spe-

cified later on. Assuming that A; is sufficient, the joint pdf
pn({de; k € wi}|Ho) must depend only on A;, with the
subscript N denoting the size of w; in pixels. For a single
pixel (N = 1), it follows that py(di|Ho) must depend only
on v - |d;|. As is shown in [3], these assumptions imply that
p1(di|Ho) is Laplacian, i.e.

P1 (delHo) = 3 -exp {~7-|dal} . 4)

Thus, when using absolute differences, one implies that the
camera noise in the difference image obeys a Laplace distri-
bution.

It is now rather straightforward to show ([3]) that the
slightly modified statistic A; = 2-A; obeys a x?-distribution
with twice as many degrees of freedom as there are pixels in-
side w;. With p(A;|Ho) known, the significance test may be
performed as described.

3 Further Processing

Change detection schemes generally share the shortcoming
of inevitable decision errors, which typically appear as small
isolated spots inside otherwise correctly labeled regions.
Furthermore, boundaries between differently classified regi-
ons often tend to be somewhat irregular. Since the change
mask is assumed as being due to movements of usually com-
pactly shaped objects, we would rather expect smooth region




boundaries.

Many authors try to overcome these drawbacks by opera-
tions like median filtering the change detection result and
small region elimination. Such purely morphological ope-
rations, however, are here affiliated with the disadvantage
of completely ignoring the original image data. They are
thus prone to errors like removing small, but correctly la-
belled regions. Additionally, they do not in the least tackle
another serious drawback: the local window w; introduces
a blurring effect, which impedes proper localization of the
region boundaries. The median filter even tries to preserve
these boundaries, inaccurate though they may be.
Therefore, we propose in the following a new algorithm
which doesn’t exhibit these drawbacks.

3.1 MAP Estimation

To express our expectations on the change masks as well
as to allow the data to play a role, we adopt the MAP ap-
proach, i.e. we try to find the change mask Q = {qx} which
maximizes the a posteriori density p(Q|D). The label ¢
can either take the value ¢ for ’changed’ or u for *unchan-
ged’. Maximizing p(Q|D) is equivalent to maximizing the
product p(D|Q) - p(Q) = p(D,Q), which is composed of the
likelihood p(D|Q) and the a priori density p(Q). Here, we
have taken advantage of the fact that the fixed probability
for a given difference image may be ignored for the maxi-
mization process.

The likelihood can be decomposed into the product

p(DIQ) = [ ] p(delax) - (5)
k

For Gaussian camera noise, p(dx|qe) is a Gaussian pdf for the
case ¢ = u. For q; = c, the difference d; may stem from one
of several random processes (generally with nonzero mean),
each of which describes the grey value differences inside some
subregion of the changed image area. However, we strongly
simplify this model by describing the mixture of different
subregions which form the changed area by just one zero
mean Gaussian process with variance o2, i.e. p(di|gx = ¢) is
given by the Gaussian pdf N(0,¢.). This assumption leads
to a particularly elegant decision rule giving good results.
The zero mean assumption is reasonable since, on the aver-
age, subregions with a positive mean in the difference image
should occur with the same frequency as those with a nega-
tive mean. The variance o2 reflects these fluctuations of the
mean values, and hence it is much greater than the variance
o? related to the camera noise. Both ¢% and o2 can be esti-
mated from Q.

The thus specified likelihood depends on the observed diffe-
rence values di, and hence it enables the data to influence
the outcome of the postprocessing.

The a priori density p(Q) shall reflect the prior know-
ledge of preferably smooth region boundaries. Following
e.g. [11, 1], we measure smoothness by counting pairs of ad-
jacent pixels situated across the region borders. The number
of pixel pairs across a boundary is the lower, the smoother
the boundary is. Making a distinction between horizontally
or vertically oriented border pairs on the one hand, and dia-
gonal ones on the other hand, we penalize each occuring
border pixel pair by a positive cost term B when it is hori-
zontal or vertical, and by another positive cost term C when
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it is diagonally oriented. Modelling @ as a sample from a
Gibbs/Markov random field, p(Q) is given by

p(Q) xexp{—Eq}, Eg=ng-B+nc-C . (6)

Eq is the energy of a particular change mask Q, and
ng and nc denote the numbers of respectively horizon-
tally /vertically and diagonally oriented border pixel pairs
occuring in Q. The smoother the regions of Q are shaped,
the lower are the numbers ng and nc of that mask, and the
lower is in turn its energy Eg. The lower the energy of the
mask, the higher its probability to occur.

The cost terms B and C shall reflect the interaction between
the pixels of a clique, which should be the lower, the farther
the pixels are apart. We relate them by C = B/2.

3.2 Contour Relaxation

Any change mask can be optimized with respect to the above
MAP criterion by a deterministic relaxation, where we fo-
cus on the region contours, or more precisely, on the pixels
located at the boundaries. The image grid is scanned, and
for every border pixel k with its label g;, we have to decide
whether to flip ¢i or leave it as it is.

Let Q, denote the change mask when ¢ = u, and Q.
the mask with gz = ¢. We decide on ¢¢ = u when
p(Qu|D) > p(Q.|D), otherwise we decide ¢ = c.

The only part of the likelihood p(D|Q) affected by these con-
siderations is the local contribution p(dg|gx). The pdf p(Q)
can similarly be split into a local term and a global one,
because the underlying Markov field implies that the pro-
bability of gz conditioned on the rest of Q depends only on
the label constellation in the 3 x 3-neighbourhood, or second
order neighbourhood, of k. The energy Eq is thus composed
of a global portion Eg, which is not affected by ¢;, and a
local contribution Ex(qr). With vg(qx) and vc(ge) denoting
the number of border pixel pairs to which pixel k£ belongs
when its label is gk, Er{gi) is given by

Er(qx) = vB(qr) - B+vec(qe)-C . (7

The decision thus reduces to

u

p(di|u) - exp {—Er(u)} 2

[

p(de|c) - exp {—Ex(c)} . (8)

Exploiting (7) and taking the logarithm on both sides of the
above inequality finally leads to the decision rule

¢ 2. .2
& 2-%-(1n%+AuB-B+Auc-C) . (9)
u [

The right hand side amounts to a contezt dependent thres-
hold t(Avg, Avc), since it depends not only on the para-
meters 02, o2, but in addition on the differences Avp =
ve(c) — vp(u) and Ave = ve(c) — ve(u). The threshold
thereby varies adaptively according to the labels surroun-
ding the considered pixel k as follows: When there are more
changed pixels than unchanged ones in the neighbourhood,
the numbers vp(gx), ¥c(gx) of border pixel pairs will be
lower for the case ¢z = c than for ¢; = u. Thus, the diffe-
rences Avpg, Avc are negative, what reduces the threshold,
and hence favours the decision ¢; = ¢. Similarly, the value
of the threshold increases when there are more unchanged
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Figure 3: Relaxation results for the masks of Fig. 2 (see
text).

pixels in the neighbourhood, thus favouring the decision for
'unchanged’. This behaviour agrees with the heuristic ap-
proach described in [8, p.69, p.196).

In practice, the optimization is carried out by repeated ra-
ster scans. Whenever a border pixel is encountered, its label
is determined by (9). A blurring measurement window is
thus not involved in this pixelwise procedure. Convergence
of this method is guaranteed, even if only to a local maxi-
mum of p(Q|D). This, however, is no drawback since the
initial mask @ usually is good enough to ensure convergence
to a reasonable result. In practice, the relaxation is termi-
nated when the number of label changes per scan falls below
a specified level, e.g. 100 for 256 x 256 images. Since only
border pixels are to be considered, the procedure is also com-
putationally advantageous. Label updating can also easily
performed in parallel (synchronous updating, cf. [5]).

Fig. 3 shows the change masks of Fig. 2 modified by the
relaxation, with cost parameters B = 5 and C = 2.5. A
comparison to Fig. 2 strikingly reveals the ability of the re-
laxation to remove isolated decision errors (note that the
changed areas above the person’s right shoulder are caused
by moving shadow).
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