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Abstract

Recently, the fractional Brownian motion (FBM) with parameter H has been used
as a description model for a large number of natural shapes and phenomena. In practice, it
is essential to estimate the parameter H, or the fractal dimension defined by D=2-H, from
a given data set. In this paper, we will propose a new method to estimate fractal dimension
by applying the autoregressive (AR) model-based approach to estimate the power spectral
density of discrete-time fractionel Gaussian noise (DFGN), which is the increment of
discrete-time FBM (DFBM).. In the simulation results, we will see that the variance be
smaller than those obtained by previous methods. Finally, several natural textured images
are analyzed by making use of the proposed estimation method.

1. Introduction

Many objects and shapes in the natural world possess
the property of 'scale-invariance' or 'selfsimilarity’, which
means that portions of the patterns will be similar to the
original one with increasing magnification. A model used to
describe such characteristic is fractel [1] which receives
increasing attention in many fields. An interesting fact is that
most of the natural scene images can be assumed fractals over
a wide range of scales. For example, if the length of a coastline
is measured using different sizes of rulers, Mandelbrot [1] has
shown that the relationship between the ruler size € and the
measured length L(e) will be

L(e)=Fel ™D Q)

where F is the proportional constant and D the fractal
dimension. Fractal dimension will be a consistent description
of the roughness of a curve in the manner that the curve is a
smooth line for D=1 and becomes more rugged as D increases
to 2. In practice, natural patterns and phenomena are only
statistically scale invariant and should be modeled as random
functions. It has been proposed by Mandelbrot {2] since 1968
that fractional Brownian motion (FBM) can be used as a
description model for a vast number of such phenomena and
objects. The definition of FBM with exponent H involving
stochastic integral was given in [2]. Let {Q,.4P) be the
underlying probability space and BH(t,w) denote FBM with

exponent H. The variance of [BH(t+T,w) - BH(t,w)] can be

evaluated by

E{ [BH(t+T,w) - BH(t,w)] 2} =1y 2)

where V., is a constant. Alternatively, we can write

B (t+T, w)—By(t,0)
-\ l:?H Py p=rw) @

where F(y) is the cumulative distribution function of Gaussian
distribution with mean zero and variance VH' Since FBM is

Gaussian, it follows from above that the increments of B, (t,u)
are selfsimilar, i.e.,the two random functions {B(to+7,0) —
B, (tw)} and {h_H[BH(to+hr,w) — By (to,w)]} have the same

distributions. In fact, the behavior of FBM depends only on
the parameter H, to which the fractal dimension for a one-
dimensional FBM can be expressed as

D=2-H. @)

It is also worthy of noting that FBM is almost surely
not differentiable and hence the definition of the 'derivative' of
FBM is meaningless. However, we may define the derivative of
FBM, which is called fractional Gaussian noise (FGN), as
being a generalized random function in the sense of Schwartz
distributions [2]. Mandelbrot also showed that FGN is
stationary and has a power spectré,l density (PSD)
proportional to ]f[l_zH, where f denotes frequency. Thus, the
graph will be a straight line with slope S=1-2H if we plot the
PSD of FGN, Py(f), versus f in log-log scale for 0 < f < 0.5. We
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can obtain the expression for the fractal dimension of FBM as
(3+9)/2.

The discrete-time FBM (DFBM) can be obtained by
sampling FBM at an equally spaced period T, i.e.

B [n,¢]=B,(nTsw) (5)

H[

where the bracket and parentheses denote the discrete-time
and continuous-time data, respectively. We now define DFGN
as the increment of DFBM, which can be written as

X Ine]=B, [n,e]-B, [n—1,0]. (6)
To simplify the notation in the following, we will use BH[n]

and XH[n] to denote DFBM and DFGN, respectively.

Mandelhrot. showed that, X”[n] is a diserete strict sense
stationary  Gaussian  process with mean zero and
autocorrelation r, [k] which can be evaluated by
2
vyl = [|1<+1|2 ok k1) )

where o2 is the variance of X, [n].

In practice, it is imperative to estimate the fractal
dimension from a given data set in the applications of FBM
model and several methods are proposed by other authors in
the past (see {3] and [4]). In this paper, we propose a new
method to estimate the fractal dimension from data by AR
estimation. The results from other

model-based spectral

authors will be compared with ours in Section IV.

II. The Spectra of DFGN

A critical problem of aliasing will occur when we sample
FGN to DFGN since the PSD of FGN is not bandlimited. This
implies that the PSD of DFGN may not be exactly
proportional to ]f[l_QH as in the continuous-time case. A

straightforward method to evaluate the PSD of DFGN is to
take Fourier transform on the autocorrelation function of

DFGN. By doing this, we will get

P (0)=1,0] + Qél ¢ [K] cos(24fK) (8)

where r_[k] is given in (7).

l
There are several problems in the analytic evaluation of
(8). Because of these analytic difficulties, we now proceed to

evaluate the PSD of x[n] numerically. First, the frequency

interval [0,0.5] is equally spaced into 64 points. To avoid the

singularity of the PSD of DFGN, let FM={f1,.., fM} be the

frequency partition of (0,0.5) satisfying the inequalities

0=f0<f1<...<fM<fM+1=O.5 (9)

where f, —f_, =05/ (M+ 1) fori=1,2..,(M+ 1) with
M=62. Thus, the values of the PSD of DFGN at FM, which is
denoted by P (Fyj= {P ()} for i =

obtained by computing (8) numerically. In the numerical
procedure, the autocorrelation function rH[k] is computed and

1, ..., M, can be

summed until k = 60,000 or |r [k]| < 0.00001. If we illustrate
PH(FM) versus F,, in the log-log scale for various H, these

plots are nearly straight lines and can be described by the
linear equation

log(P(£)) = S(H)-log(f) + T(H). (10)
Thus S(H) can be obtained by linear regression as
Doy T My
S(H) = —— = Y oy (11)
M i=1
X X12 - Mx?
i=1
1 M
where x, = log(f), y; = log(P (f)), & = ﬁ iil X;,
1 M
y=—= b y17 and -
Mi=1 X; — X
o =—x (12)
Y x2 — Mx?
(o1

Note that S(H) derived by this way does not correspond to
(1-2H), even though it is true for FGN. However, the function
h which maps S(H) into (0,1) should be one—to-one and
continuous. The computed S(H)'s versus the H's which range
from 0.05 to 0.9 with increments 0.025 are plotted in Fig. 1.
Hence, we can represent h by a quadratic function having the

least squared error defined by
35
2
L [H(k)-h(5(k)) ]

where H(k) and S(k) are defined by H(1)=0.05 and
H(k+1)-H(k)=0.025 and S(k) is the corresponding slope
computed for H(k) for k=1, ..., 35. We then obtain
2
h(x)=h0+h1x+h2x (13)
with
(14)
The relationship between S(H) and H, and the function h are
depicted in Fig. 1, where we can see that the function h fits the

points (S(H),H) very well for H=0.05, ..., 0.9. Moreover, the
inverse function of h will exist in the S(H) domain and can be

hO:O.4959, 1112_0‘4224’ and h2:0.0622.

represented by

8(y)=g5— /8,8y (15)
with
h h h
1 1)2 1
go— _—h_’ gl_[_] “——Qv and 822 - (16)
2h, 2h, b, h,,



From this we note that DFGN has a PSD proportional to
fg(H) instead of f(1-2H) as inferred previously.
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Fig. 1. Graphs of (S(H),H) and function h.

II1. Model-Based Estimation of Fractal dimension

The algorithm to estimate parameter H (and hence
fractal dimension D) of DFBM or DFGN will be developed in
this section. According to Wold's and Kolmogorov's theorems
(see [5]), we can approximate the DFGN data, {x[n},n = 1,
2,..., N}, by an AR(p) model with an appropriate order p as
follows:

x[n]=— g a_[k]x[n—k]+u[n], for n =p+1, ..., N (17)
k=1 P

where a p[k]'s are the coefficients of AR model and u[n] a white
Gaussian noise with mean zero and variance :7121. The estimates
ofa, a=]{ —ép[l] —ép[?] —é,p[p] ]/, will be determined by

minimizing the following cost function

N
£ (un)?=

1
Vie)= §n=p+1

u’u (18)

o] —

where u=[ u[p+1] u[p+2] - - u[N] ]’. Suppose that the matrix
-9’® is positive definite, then V(a) has a unique minimum at
a=(2'9) le'x (19)

and the estimate of the variance of uln}, denoted by &121, is the

corresponding minimal value of V(a), or,

§2= V(3)= %[x’x —x’@(@’@)_l‘ﬁ'x] (20)
where x=[ x[p+1] x[p+2] - -+ x[N] ]’ and
x(p ] x[1]

. x!p—H] - >f[2] (21)
x:[N—l] - - x[Np]

Next, we make use of Akaike's information criterion

(AIC) [6] to determine the model order . Specifically, the best
choice of the model order will be

p = argument{ min [N-log(#2) + 2p] }. (22)
p .

As soon as &, 72 and p are determined by (19), (20) and

(22), the estimate of the fitted AR PSD can be obtained by
substituting & and 2}3 into the theoretical PSD expression for

AR model, i.e.,
~2
B(f)= %u
|1+4[1)exp(—j2rf)+ - --

+afplexp(—j2tp) | >
(23)
We now evaluate the slope of the log-log plot of ls(FM) versus

F)p by linear regression as

. M R
S=2 o log(P(R)), (24)
and define the estimate for the parameter H of DFGN as
H = n(8) (25)

where the constants o;'s and function h are defined as in (12)-

(14). Finally, estimate of the fractal dimension of {x[1], ---
x[N]} is

K

D=2-1. (26)

IV. Simulation Results

Since the bias and variance of the proposed estimator
cannot be derived analytically, we will show its performance by
simulations in this section. The DFGN data is generated by
the procedure proposed in [4]. After the DFGN data are
generated, we proceed to estimate the PSD by fitting them to
an AR(p) model. To estimate the coefficients of AR model, we
make use of the ARX subroutine supported in MATLAB.
Furthermore, the optimum order which minimizes AIC for AR
model will be chosen. For comparison purpose, the results
obtained by using our approach are listed in Table I with those
from Pentland's variance method and Lundahl et al.'s MLE.
From Table I we note that our method will offer estimates of H
with less variance, while the bias will be larger than that
obtained by the other methods. Roughly speaking, for a fixed
data length, the proposed estimator will reduce the variance of
the estimates at the expense of increasing their bias.

V. Application to Texture analysis

To illustrate the effectiveness of our method, we now
analyze several textured images from the photographic album
of Brodatz [11]. These image patterns are discretized to
200x200 pixels with gray level from 0 to 255. The fractal
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dimension of 200 horizontal and vertical paths, 51 paths along  [4]  T. Lundahl, W. J. Ohley, S. M. Kay, and R. Siffert,
the 135 and 45 degrees are estimated and denoted by D, , D_, "Fractional Brownian Motion: A Maximum Likelihood
131, and ]52, respectively. In Table II, we list the mean and I;stlmator ar.ld fts ApPllcatlon to Image Texture," [ERE
rans. Medical Imaging, vol. MI-5, no 3, pp. 152—161,
standard deviation of these fractal dimension estimates for Sep. 1986.
each direction of four textured images. We also note that the [5] S. M. Kay, Modern Spectral Estimation: Theory &
estimated fractal dimension may be less than 1 along some Application, Prentice—Hall, Englewood Cliffs, N.J.,
direction for some texture. This means that the paths cannot 1988.
be modeled by DFBM and the spectra of the increments of the (6] H. Akaike, "A New Look at the Statistical Model
paths will be steeper than those of DFGN. However, we can Identification," IEEE Trans. Autom. Control, vol.
still distinguish different textures by the estimated fractal AC19, pp. 716—723, Dec. 1974.
dimension even they are outside the interval (1,2). From Table 7 H. B. Manmn and A. Wald, "On the Statistical
II, each textured image will be associated with an eight- Treatment of Linear Stochastic Difference Equations,”
dimensional feature vector which can be used as an indicator of Econometrica, vol. 11, No. 3 & 4, pp. 173-220,
the roughness of the texture surface. Segmentation by using July~Oct. 1943.
the feature vector and K-means clustering algorithm can then (8] H. Akaike, "Power Spectrum Estimation through
be applied. Autoregressive Model Fitting," Ann. Inst. Statist.
Math., vol. 21, pp. 407419, 1969.
VI Conclusions 9] K. N. Berk, "Consistent Autoregressive Spectral
Estimates," Ann. Statist., val. 2, pp. 489—502, 1974.
The spectral properties of DFGN have been investigated [10) S. C. Liu, ModeFbased Estimation for Fractal
by numerical computation in this paper. We have found the Dimension of Fractional Brownian Motion, Master
functional relationship between the PSD of DFGN and the thesis, National Tsing Hua University, Hsinchu,
parameter H or fractal dimension. This new D—estimator Taiwan, R. O. C.
appears to have a larger bias and smaller variance than those [11)  P. Brodatz, Testures: A photographic Album for Artists
of {3] and [4] in the simulation results. However, we have used and Designers, New York:Dover, 1966.
the system identification techniques to accomplish the
estimation of fractal dimension. This approach will estimate (a) Our results.
fractal dimension through closed form solutions while [3] is not. . . .
Moreover, much computational time has been saved than [4]. True H mean(H) bias(H) var(H)
In the applications of FBM, for example, the analysis of image 0.2 0.2534 0.0534 0.0014
textures, can be viewed as a 2D random field. Hence, extension 8é 8%% _88}%; 8888?
of the model-based approach introduced in this paper to the 0.8 0.8108 0.0108 0.0014
2D case will certainly be a direction for future researches. (b) Results from MLE approach.
True H mean(H) bias(H) var(H)
References 0.2 0.200 0.000 0.0025
04 0.399 —0.001 0.0036
(1] B. B. Mandelbrot, The Fractal Geometry of Nature, W. gg 8?32 jgg}l ggggg
H. Freeman and Company, New York.
(2] B. B. Mandelbrot and J. W. Van Ness, "Fractional (¢) Results from variance approach.
Brownian Motions, Fractional Noises and True H mean(fl) bias(fI) var(fl)
Applications," SIAM Reuv., vol. 10, no. 4, pp. 422-437,
Oct. 1968. 0.2 0.196 ~0.004 0.0036
0.4 0.392 —0.008 0.0064
(3]  A. P. Pentland, "Fractal-Based Description of Natural 0.6 0.591 —0.009 0.0081
Scenes," IEEFE Trans. Pattern Analysis and Machine 0.8 0.778 —0.022 0.0100
Intelligence, vol. PAMI-6, No. 6, pp. 661674, Nov. Table L. Comparison among the results from (a)our,
1984, (b)MLE's, (c)variance's approaches,
respectively.
Ih)h ﬁv Dl D2
mean std mean std mean std mean std
cork 1.0175 0.0679 1.4084 0.0640 1.7013 0.0512 1.4806 0.0435
stone 0.8618 0.0686 1.3494 0.0742 1.5213 0.0626 1.4339 0.0577
cotton 1.3606 0.0477 1.5867 0.0434 1.6641 0.0281 1.9368 0.0319
bark 0.7277 0.0762 1.1781 0.0748 1.2588 0.0593 1.2968 0.0569
Table I1. The mean and standard deviation of estimated fractal dimension

along specified directions for textured images.



