TREIZIEME COLLOQUE GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

USE OF TWO NEW FORMULAE TO ESTIMATE
THE POISSON INTENSITY OF A BOOLEAN MODEL

Christian LANTUEJOUL*, Michel SCHMITT**

* Centre de Géostatistique, 35 rue Saint-Honoré, 77305 Fontainebleau, France
** Thomson CSF, L.C.R., Domaine de Corbeville, 91404 Orsay Cedex, France

Résumé. Cet article porte sur I’estimation de la densité
Poissonnienne d’un modtle Booléen. Trois méthodes sont
passées en revue: la méthode classique de Steiner qui suppose
les grains primaires convexes, et deux nouvelles méthodes re-
posant sur deux formules récentes valides pour des grains pri-
maires convexes (Weil) ou bornés (Schmitt). On compare les
performances de ces trois méthodes, et I'on regarde ce qui se
passe lorsque celles-ci sont utilisées au dela de leur seuil de
validité.

1. INTRODUCTION

Over the last few years, there has been a surge of inter-
est in the modelization of textures using Boolean models and
their variations. Examples can be found in many areas such
as mining industry {i], oil industry {2,3,4], geology {3}, pedol-
ogy [6], forestry [7], metallurgy [8,9,10], physics [11], medecine
(12,13], to name some of them. The reason for the interest in
such a random set model is at least threefold. Firstly, the con-
struction of a Boolean model is genetic. It expresses the idea
of a population of objects located at random. Secondly, the
Boolean model possesses strong stability properties [14,15].
The union of two independent Boolean models is Boolean.
A cross-section of a Boolean model is Boolean. Thirdly, ex-
plicit calculations can be made for the Boolean model, and in
particular, a formula for its distribution is available.

A Boolean model is the union of independent, equally dis-
tributed, compact random sets (called primary grains) im-
planted at the constitutive points (called germs of a Poisson
point process).

Modelling textures using a Boolean model unavoidably
raises the problem of the statistical inference of its parame-
ters. Such a problem can be addressed in two different stages.
Are the experimental data compatible with a Boolean model?
If so, how are the parameters estimated? In preliminary work
[16], it has been shown that this second question makes sense,
in that given the distribution of a Boolean model, there exists
a unique value for the Poisson intensity and a unique distri-
bution for the shape of primary grains that give the Boolean
distribution. In this paper, we shall be concerned with the
estimation of the Poisson intensity. Various methods can be
found in the literature, such as the method of moments [17],
the maximum likelihood method [18], the contact distribu-
tion function [19]... In what follows, we are going to compare
the most used method [20], referred to as ”Steiner’s method”,
with two new methods derived from formulae which have re-
cently appeared in the literature {16,21], called here ” Weil’s
method” and ”Schmitt’s method” for ease of reference. We
shall compare the performance of these three methods in the
Boolean case. We shall also see what happens when the un-
derlying model departs from the Boolean one.

For the rest of the paper, we shall adopt the following
notation:

A = {—z,z € A} the reflection of the set A in the origin.

Abstract. This paper deals with the estimation of the Pois-
son intensity of a Boolean model. Three different methods
are reviewed: the classical Steiner method which holds for
convex primary grains, and two new methods based on re-
cent formulae which require the primary grains to be convex
(Weil) or bounded (Schmitt). We compare the performance
of these three methods, and we also consider what happens if
these methods are used beyond their range of applicability.

A®B = {z+y,z € A,y € B} the Minkowsky sum of the two
sets A and B.

2. THE THREE METHODS

In [15], it has been shown that the distribution of a closed
random set X is totally characterized by the mapping @ which
associates to any compact set K the probability Q(K) that
K is disjoint from X .

Q(K) = P{KnX =0}

In the case where X is a two-dimensional Boolean model of
Poisson intensity 6 and primary grain A, Q(K) is given by
the formula

Q) =0 B40K)

where @(A ® K) denotes the mean area of the set A ® K,
usually termed A dilated by K.

2.1 Steiner’s method

If A is convez, it is possible to derive an explicit formula for A
dilated by K depending upon the choice of K. For instance,
if K = K, is a disk of radius r, then

a(A®K,) = a(A) +rp(A) +7r?

which involves the area a(A) and the perimeter p(A) of the
primary grain A. If K = K, is a line segment of length r,
then

a(A® K,) = a(A4) +rd(4)

which also involves Feret diameter d(A) of A in the direction
of K. Steiner’s method rests on such formulae. For instance,
if K is circular, the experimental procedure is the following
one:

i) Computation of Q(K,) for several r values starting from
the experimental data.

ii} Since In Q(K,) is a polynomial of degree 2 in r, the corre-
sponding experimental curve is fitted to a quadratic polyno-
mial.

ili} The estimated value for @ is the quadratic coefficient of
the fitted polynomial up to the factor .

2.2 Weil’s method
In principle, the probability Q(K) would be known with per-
fect accuracy if a realization of the Boolean model was avail-
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able in the whole space. In practice however, this is never the
case. What is usually experimentally accessible is a realiza-
tion of the mode! within a bounded field, say D. Let us again
assume that the primary grain is convez. Then, the Boolean
model within D is a finite union of convex sets. It is known
in stereology [22] that any measurement which is additive

m(AU B) + m(AN B) = m(4) + m(B),

continuous and invariant under planar displacements is nec-
essarily a linear combination of three basic measurements,
namely the area, the perimeter and the Euler-Poincaré charac-
tertstic, which is the number of connected components minus
the number of holes within them. It turns out that Weil and
Wieacker [21,23] have obtained the explicit formula for the
mean of these three measurements in the Boolean case

aXND) = a(D) (1 _et E(A))

XN D) = o(D) e’ @Ag p(a) + p(p) (1- 0 A4

i

Ii

ExnD) = a(D)e 074 (9-023(4,4) +

2 e~0 a(4)g a@(D,A) + 1- =0 2(4)

where the quantities a(4,B) stand for 1a(A @ B) — a(4) —
a(B). Note that an explicit formula can be obtained for
a(A, B) in only a limited number of cases that we are not go-
ing to detail here. Let us simply mention that a(4, 4) = a(A)
if A is symmetric around the origin.

Starting from these formulae, a procedure can be proposed
to estimate the Poisson intensity of the Boolean model:
i) Experimental measurement of @(X N D). Using the first
formula, one gets an estimate for 8 a(A).
ii) Experimental measurement of p(X N D). By replacing
8 a(A), by its estimate, the second formula yields an estimate
for 8 p(A).
iii) Experimental measurement of k(X n D). By replacing
6 a(A) and 8 p(A) by their estimates, the third formula can
be applied to give an estimate for 4.

2.3 Schmitt’s method

Here, the primary grains are assumed to be bounded. In par-
ticular, they are not supposed to be convex, nor even con-
nected. All of them are contained in a disk of a fixed diame-
ter, say A. Under this assumption, it is possible to associate
to each primary grain implanted at a Poisson point a marker
that is the bottom left vertex of the smallest rectangle enclos-
ing the primary grain, with sides parallel to the coordinate
axes (see Figure 1).

A
Ate
K £
G Ate 2

Figure 1: Construction of Schmitt’s estimator

Now, it can be observed that a marker of a grain is located
within a square of side ¢ if and only if the grain hits the
domains K and L, but is disjoint from G. Starting from this
remark, it is possible to derive an exact formula for 8 [16],

1
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Insofar as the four @ quantities are experimentally accessible,
this formula can be used to estimate 4.
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3. COMPARISON OF THE THREE METHODS ON
A BOOLEAN MODEL

In order to compare these three methods, We have con-
sidered a Boolean model of intensity 0.1, and whose primary
grain is a square of side 2. 100 independent simulations have
been carried out in a square field of side 50. Figure 2 shows
an example of such a simulation.

*

Figure 2: Realization of a Boolean model with square primary
grains

Steiner’s method has been applied by taking squares of side
0,0.6,1.2,1.8,2.4 for K. Schmitt’s method has been used with
A = 2. and € = 0.5. In order to facilitate the comparison
between the three estimates, the three scattergrams have been
plotted.
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These scattergrams suggest several comments. Firstly,
the fact that the three estimators are not unbiased, but only
asymptotically unbiased, seems to be of minor importance in
practice. Secondly, Schmitt’s estimator appears to be more
dispersed than the other two, especially that of Weil. In order
to understand this difference in dispersion, we have carried
out another estimation using Steiner’s method, with larger
sides for K (0.,1.,2.,3.,4.,). This has resulted in Steiner’s
estimator being more dispersed than Schmitt’s one. So the
dispersion of an estimator appears to be directly related to
the required domain to perform the estimation. Things be-
come clearer if we plot the standard deviation of the area of
the part of the field not occupied by the grains versus the side
of the square primary grains (cf. Figure 4), after noticing that
the quantity Q(K) = exp{—8 (4 ® K)} can be interpreted
as the probability that a point is not covered by the grains of
a Boolean model of intensity § and primary grain A K. In
the case of a small-sized primary grain, the part of the field
not occupied by the grains is almost the whole field itself and
its area has a negligible standard deviation. In the case of
a Jarge-sized primary grain, all of the points of the field are
likely to be covered by a grain, and the standard deviation
is again negligible. On the contrary, in the case of a primary
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Figure 4: Plot of the standard deviation of the area of the
part of the field not occupied by the grains versus the size of
the primary grains

grain with an intermediate size, the part of the field which
is not occupied by the grains has a highly variable area, and
its standard deviation can be very large. This justifies the
use of Steiner’s procedure using small-sized K’s as in [24].
In conclusion, Weil’s estimator is the least dispersed for it
requires the smallest domain.

4. ON THE VALIDITY RANGE OF THE METH-
OoDS

In each of the estimation methods, the primary grains
must fulfill some requirements (Convezity for Steiner’s and
Weil’s methods, boundedness for Schmitt’s method). What
happens when the methods are not applied according their
specific validity domain? To answer such a question, we have
considered a Boolean model in a square field of side 50. The
Poisson intensity is 0.1, and the primary grains are made
up of two points, the second point being uniform over the
boundary of a square of side 2r centered at the first point.
100 independent simulations have been carried out for various
r values. The results are displayed in Figure 5.
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Figure 5: Three different estimates of the Poisson intensity
versus the size of the primary grain. The actual Poisson in-
tensity is 0.1.

Since the primary grain is not convex, Weil’s method is
not suitable. What it gives is not the Poisson intensity, but
simply the number of points per unit area. Steiner’s method
gives a slightly more subtle result. In the case where the two
points of a primary grain are close together, the difference
between the dilation of the two points and the dilation of
the segment between them is not big. As a consequence,
Steiner’s method gives a reasonable result provided that the
two points are rather close. As both points become more

distant, the estimate increases to the number of points per
unit area. Schmitt’s method is even more striking. When the
distance between the two points is less than the critical size
A =1, we get exactly the expected Poisson intensity. But as
soon as the distance becomes larger than A, the estimate sud-
denly departs from the Poisson intensity and rapidly increases
to give the number of points per unit area.

It is noteworthy that for large distances the three methods
give the same result (twice the actual Poisson intensity). Al-
though being conceptually different, the three methods may
be self-validating, in the sense that they give consistent but
erroneous estimates. This suggests that there may also be
some validation problems in the case where two conceptually
identical methods are used to perform the estimation. For ex-
ample, in Figure 6 we have represented the scattergram of the
estimates obtained from 100 simulations using the linear and
the square Steiner’s methods. Here, the primary grains have
been taken to be two squares of edge 0.2 located as above with
r = 3. The scattergram suggests that the Poisson intensity is
around 0.16, whereas its actual value is 0.1.
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Figure 6: Scattergram of two estimates of the Poisson inten-
sity. The primary grain is not convex, so the methods are not
suitable. Both methods suggest that the Poisson intensity is
around 0.16, whereas its actual value is 0.1.

5. DEPARTING FROM THE BOOLEAN MODEL

The question addressed in this paragraph is: can the three
methods be used to test the compatibility of a random set
with a Boolean model? To answer this question would re-
quire an extensive and probably unprofitable study. In what
follows, we restrict ourselves to considering some random sets
selected among the family of non Poisson point processes (see
Figures 7-2 to 7-4).
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Figure 7: Some examples of point processes. From left to
right, Poisson, thinned Poisson, intersection of Poisson lines,
Cox process

A typical example is given by the intersections of isotropic
Poisson lines [15,17] (see Figure 7-3). The Poisson line inten-
sity x has been chosen so as to have a number of points per
unit area equal to § = wu? = 0.1. 10 simulations have been
carried out in a square field of edge 50. We have applied
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Schmitt’s method with ¢ = 0.5 and with values of A ranging
from 0.1 to 1. The experimental results, displayed in Figure
8, show that the estimate is not independent of A\. The as-
sumption of a Boolean model with primary grains of maximal
size 1 has to be reconsidered in this case.

estimate

0. 0.2

0.4 0.6 0.8 1.
lambda

Figure 8: Exampie of Poisson line intérsections. The Schmitt
estimate computed from 10 simulations depends on A. In this
case, the assumption of a Boolean model with primary grains
of maximal size 1 is not confirmed.

A similar reasoning holds using Steiner’s and Weil’s meth-
ods. Thus the assumption of a Boolean model with convex
primary grains is invalidated.

However, there are some cases where these tests are clearly
insufficient. Consider for example, a Cox process, that is
an inhomogeneous Poisson point process with a stochastic
intensity [25]. If the intensity fluctuations are small at the
observation scale (i.e. in the field where experimental data are
available), a realization of a Cox process does not significantly
differ from the one of a Poisson point process. In such a
case, the three methods do not invalidate the assumption of
a Boolean model. The estimated intensity is just the local
Poisson intensity of the Cox process. Note however that if
the three methods were applied on another simulation of the
Cox process, we should get another estimate with a different
value.

To conclude this paragraph, let us simply say that the
three methods provide partial tests to validate or to invalidate
the assumption of Boolean model.

6. CONCLUSIONS

In this paper, we have presented three methods to es-
timate the Poisson intensity of a Boolean model: an old
one (Steiner) and two new ones (Schmitt and Weil). Based
on different assumptions on the primary grains (convexity
for Steiner and Weil, boundedness for Schmitt), these three
methods have different ranges of applicability. In the case of
a Boolean model with convex and bounded primary grains,
Weil’s method seems to be the most accurate.

When the methods are applied beyond their range of ap-
plicability (Boolean model with non convex or non bounded
primary grains, or non Boolean model), they may self-validate.
This makes it necessary, if not crucial, to design statistical
tests to check the compatibility of random sets to Boolean
models.

This paper is incomplete in many respects. The influences
of the size of the field, of the grain proportion and of the shape
of the primary grains to the precision of the estimation have
not been investigated. The use of the methods beyond their
range of validity would also deserve further examination.
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