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Abstract. Most segmentation algorithms are composed of
several procedures: split and merge, small region elimination,
boundary smoothing,. .., each depending on a lot of param-
eters. The introduction of an energy to minimize leads to a
drastic reduction of these parameters. We prove that the
most primitive merging algorithm, made according to the
simplest energy, is enough to compute a local energy min-
imum belonging to a compact class and to achieve the job of
most of the tools mentioned above. We show experimental
results.

1 Introduction.

General principles of segmentation devices. Thisnote
does not pretend to propose a new method for image seg-
mentation, but rather to justify mathematically, classify, and
hopefully simplify, segmentation devices. We start giving
some basic principles for segmentation devices. :

1) We admit the possibility of a universal boundary detection
device, definable and analysable independently from the kind
of channels to be used in the texture discrimination problem
(see [Ju,PeMal). This allows us to begin to get a mathemat-
ical understanding of the segmentation problem by consider-
ing grey-level segmentation.

2) An algorithm fer boundary detection must be scale and
space invariant. This means that multiscale segmentation
algorithms,invariant by rotation and translation, should be
considered.

3) The last point is what we shall call the comparison prin-
ciple. Given two different segmentations of a datum we shall
be able to decide which of them is better than the other.
This implies the existence of some ordering on the segmenta-
tions which is reflected by some real functional £ such that if
E(K1) < E(Ky), then the segmentation K is “better” then
the segmentation K».

Formalization and examples. We define an image g as
a scalar function, defined on the image domain € (generally
a rectangle). The function ¢ may also be vectorial, if these
channels are good indicators of the similarity (or difference)
one can caracterize textures, histograms, colors,.... That
does not change anything in the theorems and proofs we state
later.

Résumé. La plupart des algorithmes de segmentation
procédent par étapes: croissance de régions, élimination de
petites régions,..., ce qui introduit un grand nombre de
paramétres. Nous proposons une approche par minimisa-
tion d’énergie ce qui réduit considérablement le nombre de
“réglages” & faire. Meéme le plus primitif des algorithmes
de croissance posséde des propriétés comme compacité de
I’ensemble des solutions, élimination des petites régions,. ...
Nous donnons des exemples.

Denote by K the whole boundary set of the segmentation.
According to the preceding principles, a natural energy func-
tional for segmentation will contain at least two terms, a 2-
dimensional one which measures the autosimilarity of g in the
connected components of \ K and a 1-dimensional one for
controlling the length. Such a generic justification is devel-
opped in [MuShI,MuShII]. These authors propose the follow-
ing functional (see also [GeGe] for an ad hoc formulation):

E(u,K)= Ve +
() /Q\KI | /Q\K

|u— gl?de +HY(K),

this energy means that in a good segmentation (u, K), the
curves K should be the boundaries of homogeneous areas
and u a regularized version of g inside such areas. The third
term gives control over the length of K, using the Hausdorff
measure 41 As noticed in Zucker [Zu] and Haralick and
Shapiro {HaSh|, a pure region growing would generate very
nonsmooth boundaries.

With a model like the above one hopes to have put all cri-
teria together in the same functional. Many early func-
tionals in image analysis ‘had only 2-dimensional energy
terms [Pavl,Zu]. The so called “snakes” method [KaWiTe]
uses a more sophisticated 1-D term for controlling location
and smoothness of the boundary. The functional proposed by
Blake and Zisserman [B1Zi] has no term imposing the bound-
ary to be close to high gradient pixels. Other work in this
direction has been done by Terzopoulos [Te], Leclerc [Le].

Segmentation devices and their relation to energy
minimizing. In a recent work Pavlidis and Liow [PavLi]
propose an algorithmic integration of all the energy terms
mentioned above. The question which rises is wether (and
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how) energy functionals and segientation devices match to-
gether. Qur purpose is Lo classify the properties wich are
sought by those devices and to decide which are basic and
which can be deduced. To make this classification we use the
tool of mathematical analysis.

Let us take the simplest Mumford and Shah encrgy:

E(K) = /Q\[" |u - g2 + A(K), (1)

where K is the union of boundaries in 2, with Hausdorff
length £(K), and wu is piecewise constant on Q\ K, X is the
scaling factor of the model: if it 1s low a lot of boundary is
allowed. We note the energy I/(K) because in is easy to see
that u 1s the mean value of g on every connected component
defined by K.

Similar functionals have been studied by DeGiorgl’s
school [DGiCal.¢] for liquid crystals. Let us here just quote
the results obtained in [MuSh1I] on the minimumof (1). They
showed that either the points of I are regular or they can
be classified in two types: ternary crossings or perpendicular
to 99, moreover the boundaries of the segmentation verify
inequations for curvature like

(ut—g7)? = (u"=97)? < curv(z) < (u™—g1)? = (uF—g")?
(2)
where ut and u~ denote the values of u(z) on both sides of
K. Two of the authors have proposed in [MoSol] a construc-
tive approach.
Now it is well known that functionals of the kind of (1) have
many local minimizers. One has thus to choose between two
strategies:
@) The global minimization is achieved by simulated anneal-
ing, this method leeds to huge and long computations but in
some asymptotic sense the global minimum is attained.
8) Define some concept of local minimum which should be
more accessible to fast computations and verify the same
properties which are seeked for the global minimum. For
instance a tendency in simulated annealing is to define some
faster algorithms which do not pretend to find a global min-
imum [Az]. The homotopy method of [BIZi] also seeks for
“good” local minima.

2 Definitions and notations.

Regions, or connected components of Q\ K: we shall denote
them by (0;);.

Common boundary of two areas O; and Oj: we denote it by
9(0;,0;). Tt is contained in K. If i = 7, JO; denotes the
boundary of O;.

Two dimensional measure of O;: we denote it by |O;].
Isoperimetric inequality in IR? and Q: denoteby O a region in
IR2. 'Then one has £(80) > 272|OJ2. In the case of a region
2, the same kind of inequality holds for the relative bound-
ary of O in Q with a smaller constant C: £d0) > C|O]2.
Since there is no ambiguity, €2 being fixed, we still denote by
90 the relative boundary of O in Q (instead of 90 N §9).
By £(00) we mean the length of the boundary of O. For a
general definition of the length see [Fal.

Normal segmentations: a segmentation K will be called nor-
mal if every subsegmentation A/ of I\ verifies E(K") > F(K).
By subsegmentation of K we mean a segmentation obtained

by merging an arbitrary number of regions. The following
definition is a particular case of normality (see [Pav],Zu}):

Definition 1 A segmeniation K will be called 2-normal if
for every pair of regions O; and Oy, the new scgmentation K/
obtained by merging these {wo regions verifies

E(K') > B(K).

3 Properties of segmentations ob-
tained by merging.

We shall only consider segmentations having the following
properties, wich are easy to check for computationnally de-
fined segmentations, generally made of affine curves.

a) The number of regions is finite. In other terms, 2\ K
has a finite number of connected components.

b) Every region has no internal boundary. This means that
the interior of the closure of each region O is equal to
the interior of O. Indeed, if this is not the case one can
remove the internal boundaries without increasing the
energy: this is only the l-normality of K.

We will now state a compactness result for the set of 2-
normal segmentations.

Theorem 1 For every sequence (Ky) of 2-normal segmenta-
tions, there exists a subsequence converging to a segmentaiion
K such that

E(K) < lin}linf E(Ky).

K s not necessarily 2-normal, but has anyway a 2-normal
subsegmentation with stellless energy. Thus every minimazing
sequence of 2-normal segmentations provides a minimizing
segmentation.

Comments.
This result may seem to be weak, since one generally hopes
to get a unique solution for a given problem, or at least a
finite number of solutions. However, we already know that
our problem may have infinitely many local minimizers and
therefore a restriction which we can hope to obtain for a given
set of “solutions” to our problem is compactness. It indicates
that the set of 2-normal segmentations is much smaller than
the set of all possible segmentations (which is not compact).
One can proof [MoSoll} that these properties are specific to
the dimension 2. In dimension 3 the 2-normal segmentations
are no compact set and one needs the full normality assump-
tion to restore this compactness. Thus region growing algo-
rithms based on recursive merging seem to be inconsistent in
dimensions greater than 2.
Proof.
We will not give the complete proof of theorem 1 here, we
will just state two lemmas which are important for the proof
and, to our alms, give interesting properties for 2-normal seg-
mentations (for more details see [MoSol]).

Lerma 1 For every region O of a 2-normal segmentation,
denote by N{Q) the number of neighbouring regions. Then
N(O) > CA|O|2osc(g) 2, where C is the isoperimetric con-
stant in © and osc = max(g) —min(g) s the oscillation of
qg.




Lemma 2 Let K be a segmentation with no internal bound-
aries. Then the number of regions N, and the number of
edges B verify E < 3(N —1).

By edge we mean any connected component of the boundary
common to two different regions. Thus an edge is a curve,
which is either circular, ends at points where at least three
regions and three edges meet or ends on 9 (see [MuShII}).
We impose the fact that the segmentation is 1-normal in or-
der that K is exactly the union of all edges.

Remark 1. Elimination of small regions.

For any region O of the segmentation the proof of theorem 1
and lemma 1 give a lower bound for |O| depending only on g,
A and |Q|. Therefore a merging method based on minimizing
E(K) should spontaneously eliminate the small regions.

Remark 2. Elimination of thin regions.

One can also deduce that the regions of a 2-normal segmen-
tation are not too “thin”. Indeed they verify an inverse
isoperimetric inequality: there is a constant C' depending
only on g and 2 such that for every region O 02 > C60|
(see [MoSol]). Thus the devices based on the elimination of
thin regions (see [PapJa] for instance, and many clustering al-
gorithms [Pavll]) can be considered as implicit in the search
of a 2-normal segmentation.

Remark 3. Smoothing of boundaries.

The 2-normal segmentations have no chance of having bound-
aries smooth everywhere. However, due to the length term
in (1), one can show that they are almost everywhere C*
(see [Fe,Si]). The boundaries can not increase indefinetly as
it is the case for some methods. Moreover with (2) one can
impose that the boundary is smoothed according to the cri-
terion imposed by the energy. This equation shows that the
length term of our simple energy model, coupled to its bidi-
mensional contrast measuring term, is enough to ensure that
the boundaries are analogous to snakes. The idea to treat
region boundaries as snakes is implicit in [PavLi].

4 Pyramidal algorithms construct-
ing 2-normal segmentations

We now consider the problem of defining and computing a
2-normal segmentation. If we follow the main ideas of region
growing methods {Zu], we see that all they do is precisely
compute a 2-normal subsegmentation of the initial segmen-
tation, obtained by recursive merging.

Assume that the datum g is defined on a rectangle which is
divided in small squares where g is constant (trivial segmen-
tation). We require the following properties for the segmen-
tations calculated by a region growing algorithm, defined as
application associating to ¢ and A a segmentation (u, K):

e Correctedness (fixed point property): Assume g piece-
wise constant, the there exists Agsuch that forall A < Ag
the segmentation (u, K), obtained for A, verifies u = ¢
and K is union of the boundaries of the areas where ¢ is
constant (see also [Ri]).

e Causality (pyramidal segmentation property): If A > X/,
then the boundaries provided by the algorithm for A are
contained in those obtained for A’ and the areas of the
segmentation associated to A’ are the unions of some of
the areas obtained for A.

We will explain now an algorithm computing a 2-normal sub-
segmentation from the trivial segmentation verifying the pre-
ceding requests.

The basic step, the merging, is done relatively to the en-
ergy (1). Let O and O’ be two connected components of
O\ K, the decision of merging will be made according to the
sign of E(K)— E(K\J(0,0"): if this quantity is positive
than the merging operation decreases the global energy.
Consider an increasing sequence of parameters A1, Ag, . . ., Ag,
for example A; = 2. Let {ug, Ko) be the trivial segmentation,
define recursively a sequence (uy, Kp) as follows: (wnt1, Knt1)
is obtained by sweeping over the areas of Q\ K, and trying to
merge every region with its neighbour giving the most energy
decrease. Repeat this until there is no more merging possible
using parameter Apy1, i.e. we have a 2-normal segmentation
for A = Ap4q, then pass to parameter Apyz. Westop when we
have a 2-normal segmentation for Az

To make the method quite independend from machine rep-
resentation of data the sequence should start with small val-
ues and little increase (in order to avoid CPU-time expensive
global best-merging lists). Indeed having small weight for the
length term only allows “evident” mergings and postphones
less evident, but unreverseble, mergings to a bigger value of
the parameter.

5 Experifnents.

We tried the preceding algorithm on several pictures on a
SPARC1+ (40MB). An example is given in figure 1, we used
an trivial segmentation composed of 1 pixel per region. The
segmentation is achieved in 100s. We used the piecewise con-
stant model with grey-channels outlined in the preceding sec-
tion.

6 Conclusion.

First we pointed out basic principles for segmentation and
proposed a mathematical formalization in order to group the
several tasks of a good segmentation device. Then we showed,
using a simple merging algorithm, the relations between a
simple energy and region growing devices.

We conclude that it is possible to unify most segmentation
tools under a generalized merging algorithm based on mini-
mization of an energy having the minimal complexity of the
energy which we considered here. However we do not pretend
that this is enough to characterize good segmentations, we
only tried to justify that it is a necessary step. The following
would be to define evolution equations generating boundaries
and regions. In our opinion the correct formalization of such
an equation is a good challenge.
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Figure 1: Original g, boundaries K, reconstrution u.
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