TREIZIEME COLLOQUE GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

SIPREX: AN EXPERT SYSTEM
FOR DIGITAL FILTER DESIGN

J. M. de CARVALHO
M. C. PEQUENO
A. M. SILVA FILHO
M. T. HATTORI

Laboratério de Automacio e Processamento de Sinais - LAPS
Departamento de Engenharia Elétrica
Departamento de Computacio - UFC

Departamento de Sistemas e Computagio
Universidade Federal da Paraiba
Caixa Postal 10105
58.100, Campina Grande, PB, Brazil

RESUME

Résumé. Le programme SIPREX est un systéme expert qui
integre le calcul numérique et symbolique dans an outil
intelligent destiné a I'usage des ingénieurs de traitement
numérique des signaux. Le systéme opére de fagon similaire a
un expert sur les techniques de synthése et d’analyse de filtres
numérique qui choisit les méthodes et les parametres
importantes pour une application particulieére. Le programme
SIPREX est capable d’orienter 'utilisateur pendant
Ielaboration du cahier des charges e méme de deécider par lui
méme a partir des informations sur les applications du
traitement numérique de signaux déja stockes dans la base de
connaissance. Commme résultat 'execution du programme
SIPREX, le filtre numérique obtenu est celui qui s’adapte a
Papplication en question.

1. INTRODUCTION

Expert systems or, more generally, knowledge based
systems, represent one of the first examples of applied Artificial
Intelligence. They appeared initially in the 70’s when
researchers in the field started giving up the quest for machines
with generalized intelligence and decided to concentrate in the
solution of practical problems. Since then, this class of systems
has been employed in a broad range of functions such as data
interpretation, forecasting, monitoring, control, detection and
correction of failures in other systems, and as a designing tool
for diferent areas of engineering[1].

Of particular interest to engineers and other users of
computacional mathematics have been the so called Coupled
Expert Systems, which integrate symbolic and numerical
computation[2]. This interest is explained by the fact that
research on numerical algorithms has been concerned mainly
with complexity and accuracy, and not enough with making
them ease to use and understand. Tipically, it is left to the users
of numerical methods the choice of the best algorithm to be
used in a given situation, as well as the analysis and
interpretation of the results obtained. To be performed in a
optimal way these tasks require a degree of specialized
knowledge not always present in a tipical user and, as a result,
inadequate decisions and wrong conclusions are likely to come
out of the process.

One example of the situation above described is the process
of specifying and designing a digital filter. Each stage of this
process involves a series -of decisions, like choice of critical
frequencies and tolerances, phase and group delay behaviour,
type of filter (FIR or IIR), structure to be used in the

ABSTRACT

Abstract. SIPREX is an expert system which couples symbolic
and numeric computation developed to be used as an intelligent
tool by digital signal processing engineers. The system works as
an expert on different techniques for analysis and synthesis of
digital filters, deciding on the choices of methods and trade-offs
among relevant design parameters. SIPREX is also capable of
directing the user, or even deciding by him, on the choice of
design specifications for the problem at hand, based on
information about application areas of DSP available in its
knowledge base. The final result is a filter design which
represents the best solution for the problem at hand.

implementation and size of wordlenght, among others, with the
objective of obtaining a final design which best suits the problem
at hand[3]. Ideally, these choices would require from the
designing engineer detailed knowledge about digital filters and
the different techniques for synthesizing them. In practice,
however, this knowledge is usually not present and the designer
most of the times utilizes techniques which are familiar to him
or for which friendly softwre packages are available. This
situation can be easily understood if one considers that the
existing methods for digital filter design use concepts and tools
of numerical calculus, optimization theory and linear
programming, for example, which the normal engineer is usually
familiar with only in a superficial way. Consequently, the
performance of the resulting filter, although sometimes
acceptable, is usually way below the optimal possible for that .
given application. '

The above example shows that a system capable of storing
the knowledge of experts in the different techniques and
application areas of Digital Signal Processing (DSP) and
integrating it with powerful numerical algorithms, should
represent a very valuable tool for the solution of problems
involving analysis and synthesis of digital filters. This is the
objective of SIPREX, the system presented in this work.

Tipically, a coupled system is composed of a symbolic
structure, which stores all the information about the domain of
the system and performs the required inference, and anumerical
structure, responsible for the calculations involved in the
deductive process. Complying with this model the symbolic
components of SIPREX are a Control Module, a Central
Module, and an Explanation Module. Additionaly, the system is
equiped with a Numerical Module, containing the algorithms for
filter design, analysis and optimization, and a Graphical Module



946

for communication with the user. These modules and their
interaction within the system are illustrated in Figure 1 and
described in the next sections.

SIPREX communicates interactively with the user via a
menu based interface, receiving data about the problem to be
solved and providing, in exchange, information about the
synthesis/analysis technique employed. The final design can be
visually analyzed by the user via the Graphical Module through
its magnitude frequency response, phase, group delay and
impulse response curves. In case the result achieved is judged
not satisfactory by the user SIPREX tries again with a different
method, until an acceptable filter is produced.

I MUMERI cn:l

MobpuLE

3. CENTRAL MODULE

The Central Module of SIPREX is the intelligent part of the
system, where the inference process takes place. It is organized
in a blackboard architecture and composed by three main
sections: Knowledge Base, Inference Unity and Work Memory,
as illustrated in Figure 1. These components are described next.

3.1 Knowledge Base
The Knowledge Base is the part of an expert system which

holds information about the domain of the system, usually stored
in the form of rules. The Knowledge Base of SIPREX is a

CeENTraL MoDuLE

WoRrRK KNMOWLEDGE
MEMORY BasE

. .

I |' Bci I
INFEREMCE -

Unzry

i 1

MopuLE

~

ExPLANATION I

GRAPHIC CoNMTROL MopuLe
MoepuLE { INTERFACE }
% UseEr
Figure 1. Structure of SIPREX
2. CONTROL MODULE

The Control Module of SIPREX activates and control the
other modules in the system, as well as the flow of information
between them, This is done as a function of the problem being
solved, as specified by the user, and the intermediate results
obtained, which are analyzed by this module. It is also
responsible for interacting with the user via a friendly interface,
formulating questions and proposing alternatives with the
objective of obtaining an initial data set which characterizes the
problem as precisely as possible. During this interaction,
on-line help is available to the user for clarification about the
questions being formulated. The raw data thus obtained is
analyzed by the system and, through a deductive process,
originates new data which is transfered to the Work Memory of
the Central Module and used in the solution of the problem.

As aresult of the inference process which takes place in the
Central Module programs implementing the numerical
algorithms will be activated by the Control Module. Finally, the
Control Module presents to the user via the interface the final
result (filter design) obtained. Information about the choice of
algorithms and rules employed in the deductive process can be
obtained by activation of the Explanation Module. The final
design can also be visualized by the curves of magnitude and
phase frequency response, group delay and impulse rsponse,
upon request by the user and activation of the Graphical
Module.

modular structure composed by two classes of cells, those with
information about the algorithms for filter design present in the
Numerical Module and those with information about
application areas of Digital Signal Processing, where the filters
are to be employed. New cells can be added to the structure
without affecting the existing ones.

Internally, each cell in the Knowledge Base contains four
files: :

@ Rules File: stores the rules representing the knowledge of
the system.

@ Counter File: holds the count of the number of conditiopal
elements in the rules and indicates the type of conective
between them.

o Influence File: indicates the conditional elements (facts
and diagnostics) which have influence over a given rule.

® Priority File: indicates the priority of a given rule.

As an example, consider the following rule stored in the
Rules File of a cell:

rule(4,if (filter(lowpass),structure(fir)) then save_d(firl))

The register corresponding to this rule in the Counter File would
be:



count(4,0,2)

where the numbers 4,0 and 2 correspond to the identifier of the
rule, the type of conective used (0=AND,1=0R) and the
number of conditional elements to be satisfied, respectively. In
the Influence File the following registers would contain the
elements influencing this rule:

inf(4, filter(lowpass))
inf(4, structure(fir)).

Finally, one register would be present in the Priority File:

pri(4,0)

where priority zero has been assigned to this rule.

3.2 Work Memory

The Work Memory is a data base which holds information
related to the current problem. This includes the information
provided by the user via the interface and processed by the
Control Module, the corresponding cells transferred from the
Knowledge Base by the Inference Unity, and the intermediate
results obtained by the previous operation. The objective of this
memory is to ease the task of the Inference Unity, by restricting
the data field to be searched and tested during the inference
process.

3.3 Inference Unity

The Inference Unity is the component of the system in
charge of all the search, matching, and reasoning involved in
the inference process. It is composed by three blocks:
Supervisor, Scheduler and Inference Engine.

The Supervisor analyzes the contents of the Knowledge
Base, loads the Work Memory with the cells containing
information relevant to the current problem and activates the
Scheduler for operation. It also alters the contents of the Work
Memorywhen new facts are generated by execution of the rules.
Upon activation the Scheduler tests the conditions of the rules
in the Work Memory and prepares a set of executable rules
ordered by priority. This set of rules is passed to the Inference
Engine which uses a forward chaining strategy to generate new
facts and eventually reach a diagnostic.

4. NUMERICAL MODULE

This module implements the algorithms for digital filter
design, responsible for all numerical calculations involved in
the process. The algorithms utilized are those selected by the
Digital Signal Processing Committee of the IEEE ASSP Society
which are divided in two classes: programs for Infinite Impulse
Response (IIR or recursive) and programs for Finite Impulse
Response (FIR or non-recursive) digital filter design and
optimization[4]. The original programs were substancially
modified with the objective of increasing their efficiency and
robustness, and adapting them to SIPREX environment. This
includes standardization of input/output data specification and
format and suiting them to perform in the context of the system.
Also available in the Numerical Module are a program for
frequency response magnitude error analysis, another for
estimating the order of a FIR filter, and a third to calculate the
number and location of the poles and zeros of an IIR filter.

NnaA=7
It

4.1 Programs for IIR Filter Design

Four programs are available for this purpose, each
performing a distinct but complementary task. Program IIR1
produces an initial design from the user specifications. The
output of ITR1 is submitted to program ITR2 to produce a more
refined filter. ITR2 can also be used for group delay equalization
of an already existent filter. In case further refinement is needed
the output of IIR2 is submitted to program IIR3. The last
program, IIR4 has the job of quantizing the filters designed by
previous programs to a defined wordlenght. Each of these
programs is briefly described next.

Based in the DOREDI program by Dehner{4,section 6.1],
IIR1 solves the classical approximation problem for designing
frequency selective recursive filters of the types lowpass,
highpass, bandpass and bandstop. The method used produces
initially an analog design which approximates the tolerance
scheme obtained from the user specifications, followed by a
mapping to the z-plane by the bilinear transformation to produce
the desired digital filter. Possible approximations are
Butterworth, Chebyshev types I and II, and elliptic [3]. In
addition to the filter coefficients, IIR1 also calcultes the number
of poles and zeros and their location with respect to the unity
circle in the z-plane, assuming realization as a cascade of second
order sections. This information is utilized as input to IIR2.

Based on the LPIIR program by Deczky, IIR2 produces an
optimal digital filter with arbitrary frequency characteristics,
using a minimum weighted p-error criterium and the Fletcher
and Powell optimization technique[4,section 6.2]. The quadratic
error is the default (p=2). The system function of the filter is
represented in terms of its poles and zeros and the error can be
minimized for either the frequency response magnitude or group
delay approximation, or for joint magnitude and group delay
approximation. This program can either optimize an initial
design produced by IIR1 or perform phase equalization in any
other filter via the auxiliary program EQUALZ.,

Based on the OPTIIR program by Dolan and Kaiser, which
uses the method of penalty function, ITR3 assumes that the filter
is realized as a cascade of second order sections[4,section 6.3].
The program varies the coefficients of this realization untill the
arbitrary frequency response magnitude specifications are met.
A minimax optimization criterium is employed, i.e., if a filter is
acceptable then maximize the minimum amount by which it
exceeds the specifications, if it is not acceptable then minimize
the maximum amount by which it fails.

Program IIR4 is based on the FWIIR program by Steiglitz
and Ladendorf[4,section 6.4]. From a digital filter design with
high precision coefficients it produces a filter with coefficients
quantized to a finite wordlenght, which still meets the frequency
response magnitude specifications. The program initially rounds
the coefficients of the original filter to the given wordlenght, after
which a randomized version of the Hooke and Jeeves search
algorithm [5] is utilized for coefficient optimization. After
convergency is obtained the program checks for poles and zeros
which may have resulted outside the unity circle and replaces
them by their inverse, thus preserving stability.

4.2 Programs for FIR Filter Design

Four programs are presently available in the Numerical
Module of SIPREX for designing FIR (non-recursive) linear
phase digital filters, operating independently from each other



948

and to be used in distinct situations. The choice of program is
made by SIPREX based on the specifications.

Program FIR1 is based on the EQFIR program by
McClellan, Parks and Rabiner which produces an optimal
Chebyshev approximation utilizing the Remez exchange
algor1thm[4 section 5.1]. The approximation is optimal under a
minimax criterion where within the frequency bands of interest
a frequency response is obtained which minimizes the
maximum weighted approximation error. An weighting
function provides for weighting the approximation errors
differently in the different bands. This method can be used to
design all the classical frequency selective digital filters plus
differentiators and Hilbert transformers.

The popular technique of windowing for FIR filter design
is implemented by the FIR2 program, based on the FWFIR
program by Rabiner and McGonegal[4,section 5.2]. Seven
types of window are available for this purpose, rectangular,
triangular, Hamming, generalized Hamming, Hanning,
Chebyshev and Kaiser for designing lowpass, highpass,
bandpass and bandstop filters.

Program FIR3 is based on the MXFLAT program by
Kaiser, which generates coefficients for a symmetric FIR
lowpass filter with maximally-flat pass and stop bands and odd
total number of terms[4,section 5.3]. The input set of tolerances
specified for the filter are used by the program to determine the
width and central frequency of the desired frequency response
magnitude transition band. These parameters are utilized by
the program to initially compute the filter order to meet the
specifications. The filter coefficients are then determined by
uniformly sampling the frequency response and then
performing an inverse DFT on the set of samples obtained. The
order of the filter is inversely proportional to the square of the
desired transition bandwidth.

Finally, program FIR4 is based on the IDEFIR routine by
Heute which designs a linear phase FIR filter with quantized
coefficients[4,section 5.4]. It can be used for lowpass, highpass,
symmetric bandpass and bandstop filters and Hilbert
transformers. The program transforms the input specifications
to those of a prototype lowpass filter and the minimum
wordlenght which satisfies the transformed specifications is
determined as a function of the error tolerance in the pass and
stop bands and the transition bandwidth. Next, the filter lenght
is estimated and the Parks-McClellan algorithm is utilized to
obtain a lowpass design. The program works iteratively
checking at each step for possible violations of the specified
tolerances and making the proper adjustments when that
occurs. The resulting lowpass design with quantized
cocfficients is finally transformed to the desired frequency
selective filter.

43 Auxiliary Programs

Program ANALIS analyzes a filter designed by any of the
other programs by calculating the mean-square error between
the magnitude frequency response obtained and the desired
value of this function in the pass and stopbands. The result of
this analysis is used by the Control Module of SIPREX to
decide whether or not activation of an optimization program is
needed (in the case of IIR filters).

Program ESTINF utilizes an empiric technique due to
Herrmann et. al[6] to estimate the size of a FIR filter as a

function of the transition bandwidth and tolerances in the stop
and pass bands. This method can be used for lowpass, highpass,
symmetrical bandpass and bandstop filters and Hilbert
transformers.

Program EQUALZ is used to determine the number and

“location of poles and zeros of a given IIR design for which group

delay equalization is desired. Qutput data from this program can
be used as input to the IIR2 program, responsible for the
equalization.

5. CONCLUSION

An initial version of SIPREX for use on 80386 type personal
computers with DOS operating system is now under tests. The
Knowledge Base for this version contains cells about four areas
of application of digital filters: speech, audio,
telecommunications and biomedical signal processing. Initial
knowledge for the cells was obtained from study of literature and
interviews with experts on the areas. As aresult of the tests under
way and further interaction with human experts this knowledge
will be up dated and expanded, increasing the degree of
expertise of the system. Also, the modularity of the base allows
for inclusion of new cells without affecting the existing ones.

A module for automatic learning is now under development
which will allow SIPREX to modify or create new rules in the
Knowledge Base as a result of interaction with the user,
whenever the system fails to produce a filter judged satisfactory.
In this case the user is asked to explain the reasons of the refuse
and a new designing approach will be tried untill an acceptable
filter is obtained. The information involved in this process will
originate newrules to be added to the Knowledge Base for future
use in a similar situation.

Acknowledgements: This work has been partially suported by
CNPq-Brazil.

REFERENCES

[1] Waterman, D. A, 4 Guide to Expert Systems, Addison-
Wesley Publishing Company, Inc., USA, 1986.

[2] Kowalik, J.S.Ed,
Computing in Expert Systems, Elsevier Science
Publishing Co., Amsterdam, The Netherlands, 1986.

[3] Rabiner, L. R., and Gold, B. ﬂgmndéppﬁmﬂ_an
Qﬁ_zgml_&gnamacﬂsmg Prentlce Hall, Inc., USA,

1975.

[4] DSP Committee, IEEE ASSP Society, Eds., Programs
fQL_D[gzLa]_&gt_mL_mc_emng IEEE Press, New York,
1979.

[5] Hooke, R., and Jeeves, T. A., Direct Search Solution
of Numerical and Statistical Problems, Jour. Assoc.
Comput. Mach., Vol. 8, N. 2, pp. 212-229, April 1961.

[6] Herrmann, O., Rabiner, and Chan, D. S. K., Practical
Design Rules for Optlmum Finite Impulse Response
Low-Pass Digital Filters, The Bell System Tech. Jour.,
Vol. 52, N. 6, pp. 769- 799 July 1973.



