NnNAN

JOO

TREIZIEME COLLOQUE GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

Design Automation for
Digital Signal Processing Applications

Julian G. Payne

Compass Design Automation, Sophia Antipolis, France

RESUME

Cet article fait un bilan sur les derniers résultats
concernant -un projet de développement d’un
compilateur de traitement numérique du signal, orienté
ASIC. Le compilateur utilise des architectures de
traitement en série comme solution pour certains types
de problémes. La spécification est donnée en termes de
fonctionnement, flot et précision. Des attributs locaux
permettent le contrdle numerique des grandeurs telles
que le niveau de bruit et le taux de variation.

1. Introduction

Digital Signal Processing as a market segment has been,
and still is, rapidly expanding. However this rapid
growth has not been matched by a similar growth in
applications for ASIC design. This paper covers an
ASIC compiler which is targetted at DSP applications
that require intensive computational power without the
need for reprogrammability. These applications can be
characterized by the following assumptions:

o Tasks are computation intensive
Tasks are fixed-function
Computation is forward-flow additive (3, +)
Control is data-independent
Algorithms should exhibit functional parallelism
Throughput is more important than latency
An example of such an application is a Discrete Cosine
Transform [1] or a complex FFT, the complex FFT will
be used as an example later on in the paper. The
approach outlined below has been developed to provide
a competitive solution for this class of applications.

2. Architectural Model

The particular approach that is being outlined in this
paper uses digit-serial techmiques that allow almost
arbitrary mixtures of serialism, parallelism "and
pipelining. This enables us to achieve near-optimal
circuit solutions for the class of applications detailed
above. Some of the details of the digit-serial
architectures used are explained in the later sections,
however it is important to understand that the central
processing core of the circuit uses serial techniques,
whereas the external interface to the circuit is in the
form of parallel busses {mainly because the digit-serial

ABSTRACT

This paper reports the latest progress on a project to
develop a DSP orientated ASIC compiler. The compiler
uses digit-serial architectures to provide a solution for a
certain class of applications. The specification is given
in terms of the function, throughput and accuracy.
Local attributes allow for inspection of numerical
properties including noisefloor and growth.

decomposition of the parallel word is not normally what
the user wants to interface to). Hence the physical
template for the resulting circuit contains three main
parts; the central processing core, the register banks
that convert between the parallel busses and the serial
connections to the processor, and the control circuitry
which is automatically added by the compiler during the
synthesis phase. Thus the overall scheme within the
compiler follows the physical template illustrated in
Figure 1. The compiled machine consists of a
hardwired, pipelined processor cell, and a set of register
banks for communication. Input data arrive in sequence
on a bit-parallel bus, and load up the register bank.

qual deik

<z S~
input processor output
) [[

[T

senal
— cdock & control
clock

&Q/m

Figure 1. Physical template.

When this process is complete and the register bank is
full, the data block is transferrcd into the serial domain
and transmitted in pipelined fashion (according to the
word-structure) through the processor. The register
bank immediately starts filling up with operands for the
next computation. Results are captured-in the output
register bank, are transferred back into the parallel
domain, and depart the register bank in sequential
fashion. For reasons of storage efficiency, the input
register bank and the output reglst,er bank of Figure 1
are usually merged.

934

3. Digit-Serial Architectures

The compiler makes extensive use of digit-serial
architectures [2],[3] to generate the final circuit. The
power of this approach results from the fact that the
compiler is able to generate arithmetic functions
(namely add, subtract, multiply etc) that are
parameterized both by speed as well as accuracy. The
compiler chooses a global decomposition from the
parallel domain to the serial domain, by using the
informaticn it has built-in, to determine factors such as
the maximum clock-rate obtainable for a given serial
decomposition. Each unique serial decomposition, and
there are many of them due to the fact that the design
space has three parameters (bits, digits and
subwords), results in a different circuit that performs
the same function but has different characteristics with
respect. to speed, power consumption and area. The
effect. of this decomposition is shown on a simple
example, namely an adder for a six bit word, showing
the resulting hardware for three possible serial
decompositions. These decompositions illustrate some of
the possibilities in terms of the amount of
serialism/parallelism and pipelining, see Figure 2 and
Figure 3.

Space

[CRCHCHC I
(a)]
L]

]

L] []
W © @ [H

Time

Figure 2. Three serial decompostitions for a six bit word

Figure 3. Adder hardware for the three serial
decompositions

An advantage with digit-serial architectures comes {rom
the ability to be able to implement a multiply in a very

small area. The hardware techniques used in this

system further enhance this capability for the case
where a mutliplier coefficient is known in advance, we
call these fixed multipliers. Fixed multipliers have two
major gains in terms of silicon area, firstly because the
coefficient is known we do not need a bus to drop the
coefficient into the multiplier, secondly we can recode
the coefficient (using canonic signed-digit recoding

techniques) to reduce the hardware in the multiplier by

“at least 50%. An example of this is shown in Figure 4

and Figure 5. The digit-serial architectures have been
described in more detail elsewhere [4].

Figure 5. Bit-serial fixed multiplier

4. Design Specification

Design specification requires the identification, in terms
of function, throughput and accuracy, of one or more
fixed core processing tasks in each application. The
compiler places equal importance on these three aspects
of the specification. The function is specified
schematically by a dataflow network, the throughput
and accuracy are global parameters provided by the
user. The method of specification will be illustrated
with an example of a 20 MHz 256-point complex FFT.
IPigure 6 shows the dataflow specification for a FFT
butterfly, which is going to be used as the core
processor.

Figure 6. Radix-4 FET buttertly core specification.

In the case of our example the user has specified an
external data rate of 20MHz and a transform size of 256
at radix-4 leads to an internal data rate of 20MHz
between buffer memory and the engine. Hence the task
rate is one-quarter of this, i.c. SMHz. Ior the purposes

of this study we assume that the input and output data
are 20 bits wide and we use a minimum internal
precision of 24 bits within the engine.

5. Synthesis

The mechanism of synthesis involves choosing a design
space triplet that represents a serial decomposition. A
triplet, e.g. (2,16,1) has three parameters that we
refer to as bits, digits and subwords. The
parameter bits 1s one measure of the amount of
parallelism within the processor, but more importantly
it is a measure of the maximum logic depth within the
processor and hence controls the maximum allowable
serial clock speed. For a given technology and library it
is possible to characterize the relationship between bits
and serial clock speed such that the compiler is able to
predict accurately the maximum achievable clock speed
for any point within the design space. The parameter
digits controls the amount of serialism within the
processor, but also affects the throughput of the
processor because it takes digits serial clock cycles to
process one task. The last parameter subwords affects
the amount of pipelining within the processor but is
independent of throughput. The job of synthesis in the
compiler is to choose the appropriate values for the
triplet depending on the users specification in order to
minimize a cost-function supplied by the user. In order
to simplify this -process the compiler provides a
graphical mechanism to show the possible choices for
the design space.

8. Local Overrides

The user having scheduled the design, and hence having
chosen the global attributes, is able to look at the local
attributes attached to the dataflow network during the
scheduling phase and override them if appropriate. The
compiler tracks headroom and noisefloor through the
system and uses these parameters to control the
synthesis as well as to optimize the resulting hardware.
The user is able to make use of this information to
make trade-offs between size and accuracy.

XD Instance Attributes{rotor?)

accept | [Format

attribute R oI RO 10
point 19 13 31 3
growth 0 0 0 0
headroom |12 12 0 0

data 262144 262144 0 262144
decibels {122,1728 122,1728 119.1626 119.1626
latency |1 1 12 12

2
L -

‘Figure 7. Overriding of local attributes.

Figure 7 shows the noisefloor at a rotor with the default
synthesised attributes. The user is able to increase the
number of bits used to represent the rotor coefficients
and look at the resulting noisefloor attributes. The user
can then look at the size estimate for the rotor in order
to make rapid tradeofls between size and accuracy, this
is shown in Figure 8.

rotor2 size = 2635 um squ, (last size = 2571 ‘

un squ.) power = Typicalt 574 md (last power H
= Tupicals 522 i) i

confirm

Figure 8. Local size estimation.

7. Circuit Generation

Having completed the scheduling and synthesis stages
the only remaiming step 1s the circuit generation.
Circuit generation can be broken into two steps. The
first step takes each icon in the core specification,
together with the appropriate global and local
parameters, to produce an optimized functionally
correct. circuit. The hardware is minimized using
data-recoding techniques according to the numerical
headroom present on the inputs of each operator. The
second step takes the functionally correct netlist and
includes the necessary internal buffering and control
logic, so that all that is left for the user is to provide is
the serial clock appropriately buffered.

In addition to generating the circuitry to perform the
core process the compiler also generates register banks
that take the parallel data and transform it into the
appropriate serial format based on the value of the
design space triplet. The register bank consists of
parallel and serial storage buffer areas. The conceptual
organization for one half of a. (1,3,4) structure (where
there are two parallel words per task) is shown in
Figure 9. Alternate data words are loaded into the
parallel buffer on the first tick of the parallel clock.
Both words of the input data block are copied into the
leftmost column of the serial buffer on each tick of the
task clock, which always coincides with the last pulse of
the parallel clock. This 1s known as corner-turning the
input data from the parallel into the serial domain.

936

Input Bus

Parallel

Buffer

rocessor

(utput Bus

Figure 9. Corner-turning within the Registers

Data on the diagonal of the serial buffer is shifted into
the front end of the arithmetic processor pipeline at the
serial clock rate. As the results emerge from the back
end of the processor, they “chase” the input data out of
the diagonal storage locations. With subsequent ticks of
the task clock data on the lower diagonal of the serial
buffer is shifted horizontally until eventually it enters
the processor via the diagonal storage elements.
Similarly, results from the processor shift across the
upper diagonal at the task rate until they reach the
rightmost column, at which point they “turn the
corner” back into the paralle] buffer.

It should be emphasised that, as well as generating the
circuitry for the core and registers, the compiler
automatically generates all control logic and all the
logic required to ensure data consistency at the inputs of
every operator.

8. System Simulation

The compiler allows very rapid specification of the core
task for an application and provides the necessary
features to allow the user to verify that his engine is
functionally and electrically correct.

swinging buffer memories
For i3 = 0 upto 1 { # rows
For i2 = 0 upto columns-1 { # columns
For il = O upto rows-1 { # engine terminals
For i0 = 0 upto blocksize-1 {
form_addresses
¥
task
)
¥
>

Figure 10. Operational Template
However the philosophy of the compiler is that a typical

DSP application can be broken down to a central core
task which 1s executed many times within the DSP

transform. Hence it is important that the user can
verify the system over such a transform. In order to
carry out such verification the user needs to model his
system within an appropriate environment (such as a
VHDL simulator). Figure 10 shows pseudo-code for the
operational template for the FFT machine (much
simplified) using the butterfly as core processor.

It should be emphasised that the DSP Engine Compiler
does not yet synthesize the hardware in the operational
template. The operational template is merely a
mechanism to allow the user to verify the design not
just over a single computational pass, but over the
entire sequence of tasks which constitute a DSP
transform. To make this possible the DSP Engine
Compiler provides the appropriate model of the task
that is used within the central loop of the operational
template and the user has to create the models for the
rest of the system.

9. Conclusions

The paper has described an ASIC compiler that uses
digit-serial architectures in order to address certain
classes of DSP applications. The paper has outlined the
architectural methods used by the compiler showing
some examples of the efficiency of the solution in terms
of silicon area. The method for design specification has
been illustrated with an example which illustrates the
simplicity of the specification as well as the ability to
track specific information, such as the noisefloor and
word growth, that is of interest to a DSP designer.

10. References

1. S. G. Smith and J M. Rischard, “20 MHz 16x16
Discrete Cosine Transform IC: CAD and Architectural
Methodology”, pp. 369 - 378 in VLSI'89, ed. G.
Musgrave and U Lauther, Elsevier Science Publishers
(1990)

2. R. 1 Hartley and P F. Corbett, “Digit-Serial
Processing Techniques”, Trans. IEEE CAS-37 pp. 707
- 719 (June 1990)

3.5 G. Smith and P B. Denyer, Serial-Data
Computation, Kluwer Academic Publishers (1988)

4. S. G. Smith, R. W. Morgan, and J. G Payne, “Generic
ASIC Architecture for Digital Signal Processing” . Proc.
[EEE ICCD'&9 pp. 82 - &5 (Cambridge MA, October
1989)

