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RESUME

Cet article introduit un nouveau modéle que l'on appelle
weighted multiresolution process (WiMP) pour I’analyse
bidimensionnelle des signaux. Le modéle combine les pro-
priétés spatio-temporelles de la décomposition en ondelettes
avec celles des signaux auto-affines 4 modéliser. Un WiMP
peut étre vu comme une chaine de Markov constituée de
translations entre niveaux et voies d’une décomposition
pyramidale. Les cas périodiques et apériodiques sont étudiés
ainsi que les algorithmes de décomposition et de reconstruc-
tion.

1 INTRODUCTION

This paper presents a two-dimensional extension of the model

introduced in [1}. The modeling technique is restricted to self-
offine signals. A signal is called self-affine if any part of the
signal after being transformed by an affine transformation is
almost identical to the entire signal. This qualitative defini-
tion was formalized by Barnsley when he introduced the iter-
ated function systems with probability, (IFS) [2]. The math-
ematical definition of a self-affine signal, f, in two dimensions
is then: i

100 =LA B (A7 (b)), )

where A; is 2 2 x 2 matrix, [A;| is the Jacobian of A;, b;
is a translation vector, and p; is a probability, i.e., p; > 0
and Zf;l p; = 1. f is called the attractor of the IFS defined
by {Ax + by, Pitieq1,-N}. When one of the matrices A; is
singular, the function f can still be defined using the measure
notation. This model has been proven to generate texture-
like images [3, 2]. It is particularly suited for images since
the functions fulfilling Equation (1) are positive and have L!
norm equal to one. A direct computation of the IFS code
is ill-posed. This paper presents a model that would make
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ABSTRACT

A new model for two-dimensional signal analysis, called
the weighted multiresolution process (WiMP), is introduced.
The model combines the scale and time-frequency localiza-
tion properties of the wavelet representation with the self-
affine characteristics of signals to be modeled. A WiMP
can be viewed as a Markov chain of weighted translations
between levels and channels of a pyramid decomposition.
Both aperiodic and periodic signals are investigated and the
corresponding decomposition/reconstruction algorithms are
presented.

the computation easy to perform while not compromising the
diversity of images that the IFS model can generate.

In the following sections, a subset of self-affine signals, the
scale invariant signals are considered. A signal is scale invari-
ant when the linear parts of the affine transformations, A;,
are constant for all ©’s. The WiMP model introduced applies
to scale invariant signals but also performs quite well for the
case of self-affine signals.

2 WiMP

2.1 Wavelet Representation

This section presents a quick review of the work introduced
by Mallat [4] on the wavelet representation in two dimensions.
When an approximation representation of L?(R?) is known,
i.e., the approximation function, ®(x) is known, one can con-
struct a set of three functions ¥;, ¥,, ¥3, such that

{2j Wy (2j-x - n) } ke{1,2,3) - | 2
neZ2? '

forms a complete orthonormal basis of LZ(R2). Any function
of L2(R?) can thus be defined uniquely by the three three-

dimensional sequences of £2(Z?) {d’l (], din], &[n] }je —

=3 5 T drn(x-n). @

k=1j=~0c0 neZ?
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The parameter j corresponds to the level of decomposition
while & is the channel number of the decomposition.

The advantage of this decomposition compared to the reg-
ular Fourier transform is that it can be constructed to have
very good localization in time and frequency for a well chosen
approximation function. A local change in time or frequency
will not cause a major global change in the decomposition se-
quences. Moreover, the decomposition can be performed using
pyramid filter banks.

The signal does not have to be decomposed over all scales 27,
its decomposition can be truncated leaving the low-frequency
approximation unchanged. The truncated representation of
the signal is defined by the equation:

3 =
=35 3 dn2y (ij— n)
k=1j=M neZ? (4)
+ 5 oMmj2e (ij - n) ,
neZ?
where the parameter M is called the {runcation level.

If the decomposition used is identical to the one used by
Mallat, the basis functions are all separable and can be con-
structed from one-dimensional wavelets [4]. In many cases f
does not have infinite resolution, the range of scales is usually
finite and not semi-infinite as in (4), i.e., the d}[n]’s are zero,
forj > P> M.

2.2 Self-affine signals

The space of self-affine signals generated by IFS’s is not part
of L2(R2) but is the set of Borel measures on [0,1] x [0,1].
However, if the signals are considered at finite resolution,
they can be viewed as elements of LZ(R?), thus having a
wavelet decomposition. If the signal is scale invariant, ie.,
fulfills Equation (1), such that the scaling matrix is of the
form [ 05 0
0 05
ing property:

], the wavelet decomposition has the follow-

N
djn] = ; 2pi &' [n - 27by], (5)

if both components of b;27 are integers, otherwise the rela-
tionship involves the characteristics of the wavelet used in the
decomposition. There exists a relationship between levels and
channels of the wavelet decomposition. Level § can be viewed
as the output of a FIR filter excited by level 5 — 1. When the
IFS is homogeneous and the common affine transformation
is of the form 0.5 S, where S is an isometry that keeps the
unit square, [0,1)? invariant, relationships between levels and
channels of the decomposition are also simple. In this case,
the filters are all related to each other. The positions of the
non-zero filter taps are scaled by a factor of 2 while their val-
ues remain unchanged. Since the frequencies corresponding
to d}[n] increase when j increases, Equation (5) shows that
the high frequency content of the signal can be reconstructed
from the low frequency content.

2.3 WIiMP definition

The 2-D WiMP model uses the relationships between the lev-
els and introduces flexibility in the choice of the filters. Before
presenting the 2-D WiMP model, some definitions need to be
introduced. I = {1,2,3}, and X =1 x Z3.

Definition 1 A channel-k level-; translation, 7,{,. with time
translation factor t}, channel translation factor x3,, and level
translation X, is defined as follows:

2 (X) — £ (X)

y=1i(x) <

i .
Yyt ) = x:txg“ m—t], if m=j+rl, and i=k+xd.
Y] =0, otherwise.
y= (yﬂn])'('?')ezs’ t] €22, xj€{-2,-1,0,1,2}, and N, € Z.
4.n

This transformation is the combination of two operations.
First, all channels and levels except the channel-k level-j se-
quence are set to zero while the channel-k level-j is kept
unchanged, then the new series is translated with a four-
dimensional translation vector, See Figure 1. Now the formal
definition of a 2-D WiMP can be given.

Definition 2 A two-dimensional weighted multiresolution
process (2-D WiMP) is defined by

X,aM, {dﬁl}kel o

i€{0,-,Ni -1}

) {Tiz,i) p‘lic,i } kel )
i€Z,j

where 'r,{, is a channel-k, level-j translation with translation
factor t',’;,,., channel translation factor xfm-, and level transla-
tion factor /\{’,-, p};,,. is a real number corresponding to the
weight associated with the transformation Ti’i, and a™, and
{dkM }kel are sequences of £2(Z%). a™ is called the low-pass

sequence and {dkM } are the seed sequences.

kel

To each WiMP corresponds an operator that generates a trun-
cated wavelet representation from the four two-dimensional se-
quences a™ and {d,’cw }kel. The operator is called the WiMP-
operator.

Definition 3 The WiMP-operator, T', associated with the
above WiMP operates on a truncated wavelet representation
and is defined by:

This transformation defines all the links between different lev-
els and channels of the truncated wavelet representation. It
allows total freedom on how to relate levels and channels to
each other.

The reconstruction of the function from the WiMP is
performed at the wavelet representation level. The trun-
cated wavelet representation of the function defined by the
WiIiMP is {aM Jimg e T°"(§)} where § is a semi-finite four-
dimensional sequence where §}'[n] is zero everywhere except
at level M where §¥[n] = d¥[n]. Some restrictions have to
be put on the level translations 7§’s so that the above limit
exists. In our representation all level translation factors Xi’s
are usually set to 1 since in most cases adjacent levels are the
most similar.



3 PERIODIC DECOMPOSITION

When a function of L2(R2) has finite support, the support
may be considered as included in [0,1]? without loss of gener-
ality. Any function with finite support can thus be periodically
extended by the vectors ({0, 1), (1, 0)). Since nonzero periodic
functions have infinite power, they do not belong to L?(R2).

Perrier and Basdevant studied the wavelet representation of

periodic signal on the circle [5]. The theory can be easily
extended to the unit torus, T = [0,1]2. The basis functions
ensuring the decomposition are aliased versions of the ones
used in the previous section.

{ Zzn 29, (2j(x +m)— m) (6)

}ke 1, (jn)eZ?

form an orthonormal basis of L?(T), where ¥’s are the
wavelets of the aperiodic decomposition seen in the previous
section.

The wavelet representation for a periodic signal is thus de-
fined by the sequences

{{Jiln]} kel -50[0}} :

neZ? :

This is not a truncated decomposition, &°[0] is the mean value
of the function f, and the sequences {Ji[n]}nez , correspond
to the band-pass part of the periodic signal and are called the
channel-k level-j sequences. Since IFS attractors have finite
support by nature, the periodic decomposition can be used.
The choice of the periodic decomposition is motivated by the
non expansiveness of the decomposition, and the efficient com-
putation using FFT’s.

If the attractor f is generated from an homogeneous IFS
whose' common linear part is half identity, the decomposition
has the same characteristics as in the aperiodic case, See Equa-~
tion (5):

& [n] = Zl 2p: ' n — 27by), (7

when both components of 27b; are integers. Since the WiMP
model defined earlier operates on four-dimensional sequences,
any periodic wavelet representation can be used in the WiMP
operator. The periodic or aperiodic nature of the signal
becomes apparent only in the decomposition/reconstruction
phase of the wavelet representation.

4 COMPUTATION OF THE SOLUTION

Now that the model has been presented, we need to find a way
to determine the parameters of the model given any signal.
The problem of determining the WiMP transformation, T, is
equivalent to the one presented by Cheng and Etter [6]. They
considered the case of two one-dimensional signals u and v,
where v is assumed to be the sum of weighted translations of
u, or v is the output of a very sparse FIR filter with input u.
Our method uses a straightforward extension of this technique
to two dimensions.

In this approach a mean square error, (MSE), is iteratively
minimized. First, sequences from contiguous levels and iden-
tical channels are considered. If u[n] is the channel-k level-j
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sequence, i.e., u[n] = di[n], and v[n] is the residual signal ini-
tially set to dZ“[n], the optimum translation minimizing the
error 3, (v[n] — u[n)) is defined by the location of the abso-
lute maximum of the cross-correlation between un] and v[n].
The associated optimum is the ratio of this maximum to the
power of the original signal u[n]. The residual signal, »[n],
is updated by subtracting the weighted and shifted original
signal, u[n].

The algorithm is optimal when the input signal u[n] is
white. When this assumption is not true, the algorithm be-
comes suboptimal and behaves in an oscillatory manner. The
estimated weight associated with the first translation is usu-
ally overestimated. After several iterations, the initial trans-
lation is found again, this time the associated weight reduces
the magnitude of the combined weight. In this manner, erro-
neously estimated weights are updated after a few iterations.
The oscillations can be removed by estimating simultaneously
the weights each time a new translation is estimated.

The method does not have to be restricted to contiguous
levels and identical channels. The above algorithm can be
improved by comparing the resulting MSE after considering
all possible levels and channels as long as the level considered
is lower that the one to be decoded. Another freed parameter
can be added by introducing isometries leaving the unit square
invariant

When the above inverse solution is carried along increasing
level ranks, the WiMP model and its truncated representa-
tion can be obtained simultaneously if the input of the filter
between levels j and j + 1 is the approximated sequence of
level j, i.e., the output of the FIR filter between level j — 1
and j. Moreover, since the levels and channels are orthog-
onal to each other, the total MSE between the original and
reconstructed signal can be found by adding the MSE of each
channel weighted by a rank factor.

5 CONCLUSIONS

A new algorithm for coding self-affine images has been pre- -
sented. The main characteristic of the WiMP model is its
estimation of the relationships between channels and levels
of a pyramid decomposition. With an iterative estimation of
the translations, the wavelet representation gave better re-
sults than other pyramids decomposition representations, due
to time-frequency localization.
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Figure 1. Example of a channel-k level-j translation,
where k = 1, the level translation A =2, and the channel
translation xi = 1, defined in Definition 1.



