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Résumé

Il est décrit ici un concept novateur pour la génération
de blocs pseudo aléatoires bidimensionnels pour mettre au
point des quantifieurs vectoriels sans mémoire d’images.
Afin d’étre utilisable sur un grand nombre d’images réelles,
les blocs sont modellés en des processus aléatoires & invari-
ance sphérique (SIRP) basés sur des fonctions gaussiénnes
généralisées. Ce faisant, la forme des distributions
d’amplitude et les corrélations entre les éléments des blocs
peuvent étre modifiées indépendament 1’une des autres par
un parameétre de forme pour la premiére et une matrice de
covariance pour les secondes.

1 Introduction

In the past vector quantization (VQ) has found wide appli-
cations in image source coding. To increase coding efficiency,
the codebook of a VQ has to be adapted to the statistical
behavior of image blocks by a training sequence [1]. Theo-
retically, a VQ training sequence must be infinitely long and
must resemble all the statistical characteristics of the signals
to be encoded later. Practically, it is impossible to generate
such a long sequence from a limited real image data base on
the computer. So, in most cases one has to be satisfied with
a short, non-representative training sequence drawn from
only few real images. For this reason the performance of
a so optimized VQ becomes highly sensitive to the kind of
images contained in the training sequence, leading to the so
called inside/outside—effect.

A possibility to eliminate the inside/outside—effect is
to use codebooks trained by image-like pseudo random
blocks. Generating Gaussian or uniformly distributed ran-
dom signals to train a VQ is certainly a simple task,
but these distributions usually do not reflect those of real
images, which in fact show a strong peak at zero.
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Figure 1: General concept for mean-removed VQ

Abstract

A novel concept is described to generate twodimensional
pseudo random blocks for training memoryless image vec-
tor quantizers. To cover a wide range of real image statistics
the blocks are modelled as spherically invariant random pro-
cesses (SIRP) based on generalized Gaussian functions. In
doing so, the form of the univariate amplitude distributions
and the correlations between the block components can be
changed independently of each other by a form parameter
and a covariance matrix, respectively.

In this paper we are going to present a new concept for
generating pseudo image blocks, which is based on model-
ling image blocks as samples of spherically invariant random
processes (SIRP). We confine ourselves to the generation of
image block structures which are described by the AC—terms
of the blocks. Each block’s DC—term which represents the
mean of the block is not taken into account, for in practice
VQ is often applied to mean—removed AC-blocks in order to
lower coding expenditure.

Fig. 1 shows a general block diagram of a DC/AC-
separated block processing, wherein the AC-block X is ob-
tained by subtracting the mean d of the input block X from
each component z; of X. The DC-term is then quantized
by a scalar quantizer and the AC-block by a vector quanti-
zer. Since d and X are nearly uncorrelated, this separation
results in only small performance loss, while the realized pro-
duct code drastically reduces the coding expenditure when
compared to directly applying VQ to the input block X.

Our SIRP-model for the AC-blocks is developed in [2].
The work was first motivated by the fact that ellipse-like
contour lines of equal height — a necessary condition for
processes to be SIRP — had been measured for bivariate pro-
bability density functions (PDF) of the block components.
The main advantage of our model is that the form of the uni-
variate PDFs and the covariance matrix of the blocks can
be varied independently of each other, so that higher—order
statistics are realized. Specifically, we have applied genera-
lized Gaussian functions (GGF) to model univariate PDFs.
It turns out that GGF can cover a wide spectrum of real
image statistics.

2 The SIRP multivariate PDF-
model
A good generator of pseudo image blocks requires a stati-

stical model whose parameters are used to change the sta-
tistical behaviour of the generator outputs. Pseudo random
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blocks with Gaussian or uniform distribution are certainly
simple to generate, but these two distributions do not resem-
ble the true statistics of image blocks. Statistical measure-
ments have shown that the components of mean-removed
AC-blocks have a much greater frequency of occurrence at
zero amplitude than assumed by the Gaussian model. Be-
sides, Gaussian and uniform distribution models cannot sa-
tisfy our desire to vary the form of the generated PDFs in
order to cover a wide spectrum of applications.

An alternative to solve this problem is to model AC-blocks
X as samples of a SIRP [2]. Each n—variate PDF of such a
process can be written as

pe(X) = 772\ M7 3 £, (5) with |M]=det(M). (1)

Here M is the covariance matrix of the n—dimensional ran-

dom vector X and fn(s) is a function whose argument s is
the quadratic form

~X'M'X (2)

=

of X built up by the inverse covariance matrix M ™1, By this
definition, Gaussian processes are apparently special mem-
bers of the SIRP family, for which f,(-) is an exponential
function.

If in (2) s is held constant, then the equation describes
for n = 2 the contour lines of equal height for each biva-
riate PDF. These contour lines are in general elliptic. They
become circles if the components of X are decorrelated and
have equal variances.

Figure 2: The contour lines of equal height of 9 measured
bivariate PDFs

For the purpose of verifying whether AC-blocks of real
images can indeed be modelled as SIRPs, Fig. 2 shows the
contour lines of equal height for 9 bivariate PDFs measured
on pixel pairs chosen from 8 x8 AC-blocks. The contour lines
were generated by logarithmic quantization of each PDF and
visualized by assigning different grey—levels to the quantized
values. It is seen that they are approximately ellipses. For a
detailed description of our statistical experiments the reader
is referred to [2].

The multivariate PDFs of SIRPs can be expressed by [3]

PR = [ e @
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This expression says that each n—variate PDF psirp(i Yofa
SIRP with M as covariance matrix can always be described
as a weighted averaging of different Gaussian ones

pgauss(i’ 1‘) =

x"
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which differ only in their covariance matrices. The diffe-
rences are characterized by a variance scaling factor r for
each Gaussian process p{g uss( , r). v makes from the co-

variance matrix M of the SIRP a scaled version M = =M
used as the covariance matrix of the corresponding Gaussian
process. It is also clear from (3) that the form of a special
SIRP distribution can only be influenced by the weighting
function p,(r) which is called Sigma-density. If p,(r) is a
Dirac-impulse at r = 1, the averaging results in a Gaussian
process.

The averaging character of (3) enables us to think of a
SIRP as a random mixture of various Gaussian processes
with differently scaled covariance matrices. Since Gaussian
processes with a given covarinace matrix M , can easily be
generated, the task to realize a n—dimensional SIRP is re-
duced to switching from one Gaussian process to another
under the condition that the occurrence of these Gaussian
processes is controlled by the Sigma-density p,(r). Thus,
the key to SIRP-block generation is the evaluation of p,(r)
for a desired PDF form.

Fortunately, the spherical symmetry provides a possibi-
lity to derive p,(r) analytically from the univariate PDF
with normalized variance. In [4] it is shown that all multiva-
riate PDFs of a SIRP are related to the univariate PDF by a
differential equation. From this differential equation a rela-
tionship can be derived between the Sigma—density and the
univariate PDF. Eventually, the form of each multivariate
PDF of a SIRP is completely determined by the normalized
univariate PDF. Hence, to develop a SIRP-model one only
needs to find a model function for the univariate PDF and
to make the Sigma-density computable for every value of
model parameters.

For our SIRP-model to be practicable we have used gene-
ralized Gaussian functions (GGF)

va(v)
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with
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to model the normalized univariate PDF of each AC-block
component. Though GGFs have only one parameter v, cal-
led form parameter, to vary their form, this parameter turns
out to be sufficient to fit a wide range of real image distri-
bution forms. In [2] it is proved that GGFs can be a SIRP-
model function as long as the form parameter v is less than
or equal to 2.

Because of the functional speciality of GGFs we have ap-
plied Mellin—transform to the differential equations between
the multivariate PDFs and the univariate one and can get in
the Mellin—-domain an easy expression for the Sigma—density



Po(r) [2]. The inverse Mellin—tranform of this expression,
which is defined by a Barnes—integral
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leads finally to a possibility to numerically evaluate the
Sigma~density for every valid value of the form parameter
v. In [2] the integral problem (6) is solved by asymptotic
expansions for either small or large r.

While the form parameter v of the GGFs changes the dis-
tribution form of the pseudo image blocks, the generated
random structures of the blocks are determined by the cova-
riance matrix M. It is to note that the covariance matrix of
mean-removed AC-blocks — unlike that of original blocks
— can no longer be assumed as stationary, that means as

shift-invariant. Considering the lowpass characteristics of

image signals, Du and Fischer have shown a mathematical
proof of this effect and derived non-stationary covariance
model functions for AC-blocks of limited dimensions (up to

8x8) [5][6].

3 The generator concept

The interpretation of SIRPs as mixtures of Gaussian pro-
cesses has first been utilized by Brehm to generate spheri-
cally invariant speech-model signals [4]. Unfortunately, his
generator concept cannot directly be taken over for the ge-
neration of SIRPs as image VQ training sequences. So, our
concept differs from his in the following aspects:

e Brehm generates continuous one-dimensional spheri-
cally invariant variables as pseudo speech signals; we
generate two—dimensional ones as pseudo image blocks
without considering continuity from block to block.

o Brehm uses Meijer’s G—functions to model the normali-
zed univariate PDF of the samples; we use GGFs, thus
considerably easing the fitting problem of model para-
meters.

¢ Brehm uses the Laplace-transform to get the Sigma-
density from the normalized univariate PDF, which
is essential for the generation; we use the Mellin-
transform, because no Laplace-table is known for
GGFs.

¢ Brehm uses autocorrelation functions to embed correla-
tions in the samples; we use covariance matrices which
need not be shift—invariant to embed correlations in the
block components.

In Fig. 3 the block diagram of our SIRP-generator is
shown. The generator consists — like that of Brehm’s —
of two paths. The top path realizes a random variable r
for each block to be generated, which has the Sigma—density
po(r) as PDF. To obtain this distribution a non-linearity
is used which transforms the uniform distribution of a PN—
generator (W) into the Sigma—density. For each desired form
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Figure 3: The block diagram of the SIRP-block generator

parameter v the Sigma-density is evaluated by asymptotic
expansions of (6).
The bottom path realizes a Gaussian distributed block

X G with the covariance matrix M which is the covariance
matrix of the SIRP-blocks to be generated. To get this cor-
related Gaussian block, firstly a n—-dimensional decorrelated
Gaussian block Z with unit variances is formed after a non~
linearity transforming uniformly distributed random varia-
bles into these Gaussian ones. The n components of Z are
then multiplied by the square roots of the eigenvalues A;
of the covariance matrix M. This results in a decorrelated
block Y with components having variances equal to the ei-
genvalues of the covariance matrix M. This feature indicates
that one can think of Y as the Karhunen—Loéve-Transform
(KLT) of the correlated Gaussian block X G Finally, an
inverse KLT (KLT~') whose matrix is to be calculated from
the covariance matrix M transforms the Gaussian block Y in
the KLT-domain back into the original domain, delivering
the correlated block X G.

The last step is to randomly scale the variances of the

Gaussian block X G, whereby the scaling factor r for each
block obeys the Sigma—density. In Fig. 3 this is done by mul-

tiplying each component of X G with the very same variable
r coming from the top path. Since r is random from block
to block and has the Sigma-density as PDF, the ensemble
of the generator output blocks X P can be regarded as a
random mixture of differently variance-scaled Gaussian pro-
cesses. As a result, these output blocks form a spherically
invariant random process with the desired Sigma-density.

4 The generation results

Using the proposed generator concept pseudo image blocks
with given covariance matrix and normalized univariate
PDF were generated. To show the effect of the covariance
matrix M on the realized structures of the SIRP-blocks,
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the generation has been carried out for four different cova-
riance matrices. Each covariance matrix corresponds to a
certain preferential orientation of the structures. They were
obtained by first classifying a long sequence of real 8 x 8
image AC-blocks into the orientations of 0°, 22°, 45° and
‘blocks of mixed orientations (mixture) and then measuring
for each class of blocks the corresponding covariance matrix.
A madified version of the classifier from [7] was used for this

purpose.

Figure 5: The corresponding real image AC-blocks

The results of the SIRP-generation for the four structure
classes are shown in Fig. 4. The figure is partitioned into four
quadrants, each containing generated 8 x 8 SIRP-blocks for
a class. Starting from the left top quadrant the classes are
arranged clockwise as 0°, 22°, mixture and 45°. For each
class the form parameter v was fitted to the univariate PDF
of the real image AC-blocks which the covariance matrix was
measured from. v varies from 0.7 to 0.9 for the four cases
of the generation. To verify that these generation results
do reflect the real statistics, for each orientation a randomly
chosen part of the real image AC-blocks which the model
parameters are fitted to is shown in Fig. 5. A comparison
shows quite a similar appearance of the model-generated
and the corresponding real blocks.

For n-dimensional decorrelated SIRP-blocks X =
(z1,Z2,...,%n) with A; as variance of z; the n—variate PDF
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Figure 6: Comparison of the measured and computed radiu
density p,, (r) for v = 1.0

depends only on the normalized radius

z; are random and so is r. For a given form parameter 1
the PDF p,_(r) of r can numerically be exactly evaluatec
[2]. But it also can be measured from the generated SIRP-
blocks. In Fig. 6 the computed and the measured PDFs o
so defined r are compared to each other forv =1landn=1
2, 64, where the zigzag curves correspond to the measure«
PDFs. It is seen that the measured PDFs well approach thi
corresponding PDFs computed based on the SIRP-theory
This again confirms the performance of the generator.
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