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RESUME

La méthode de Gibbs et Markov est étendue a Iintégration des
observations fournies par capteurs virtuels et organisées selon une
taxnomie hiérarchique. Cette méthode multiniveau couple le procédés
de retauration et segmentation a des niveaux d’abstraction multiplees
en modelant les observations (acquises avec les capteurs virtuels) par
wne fanction d’énergie différente pour chaque capteur virtuel.

i. INTRODUCTION

The Gibbs-Markov model is a powerful method {1]for representing
a-priori knowledge about different classes of images. The main
advantage of this method is the capability of representing a global
constraint on the characteristics of a signal as the sum of local terms,
which can be separetly computed on different set of samples. This
aspect makes this method attractive for the inherent high degree of
parallelism. Moreover, it has been shown [2,3] that the global
constraint can be interpreted as a tool for regularizing a-priori
knowledge necessary to solve ill-posed problems [2], such as
segmentation, edge-extraction and restoration.

Such regularization is possible, as the constraints to be used for the
restoration and segmentation processes can be associated with the
solution probability, which depends on the set of acquired
observations. Stochastic [4] and deterministic [5,6] optimization
algorithms can be used to maximize this a- posteriori probability. The
availability of appropriate optimization algorithms makes the method
particularly interesting.

In this paper, the Gibbs-Markov approach is extended to integration
of observations provided by virtual sensors and organized according
to a hierarchical taxonomy. The extension consists in using of
Gibbs-Markov Random Fields (GMRFs) for higher-level processes.
The classical approach is strictly used for models of pixel-level
processes. Other hierarchical models [1,7] have been proposed in the
literature: they couple restoration of original colours, of image sites
(low-level) with placement of labels (high-level). The multilevel
GMRF approach is an extension of the hierarchical one in that coupled
processes are performed at multiple abstraction levels corresponding
to different virtual sensors. In particular, the single level restoration
and edge extraction processes proposed in [1] are extended by using a
two-level distributed representation. To this end, two coupled GMRFs
models are associated with two specialized virtual sensors.
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A modified version, (FO,RO), of the coupled field (F,L) proposed
in [1] is associated with the first level sensor. F is the set of variables
related to the image to be restored; the values of such variables are
included in the set of digitized luminance values of a pixel. L (line
process) is a dual field assuming binary values related to the presence
of discontinuities between adjacent image pixels. A labeling process
R is here used instead of L; a pixel is uniquely identified by a label
chosen from adiscrete set, and region properties are taken into account
when describing problem constraints. Using region properties instead
of discontinuities allows one to compute a probability measure which
takes into account more information about a scene. In other problems,
such as depth determination, the use of discontinuities may be
sufficient.

A similar coupled field, (F ! RY, is associated with the higher level
virtual sensor. Coupled solutions provided as observations by
lower-level virtual sensors are considered as input. Input observations
are organized into a graph whose nodes are regions (i.e., groups of
pixels with the same label). The modelled process consists in labelling
regions in order to merge them into complex groups. Consequently,
coarser discontinuities arise at a higher level, as local differences of
labels. ’

In section 2, the proposed extension is explained, and in section 3,
models of multilevel coupled fields are described. In section 4 results
on real and synthetic images are reported .

2. GENERAL DEFINITIONS

In the GMRF model [1], an image I is represented as a square lattice
So={sm, m=1..M2} whose sites (i.e., pixels) are associated with
variables, fm,, which assume random values included in a discrete set
. Similarly, a dual lattice Do is introduced, whose’sites assume
binary values representing the presence of edges. In this paper, we
perform a pixel- labelling process at the lower level, segmenting the
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image into sets of homogencous regions. A label 1y is assigned to
each pixel, which takes on a random value chosen from a set of M
labels. Restoration and scgmentation at the pixel level are obtained
as the estimation of the joint best configuration (Maximum A-
Posteriori, MAP) of two sets of variables, i.c.,{F0 ,RO} depending on
input observations 6= {GU:(DE s? }, provided by the camera,

The obtained regions are considered as input observations G'
provided by virtual sensors at level 2, and are represented by a graph,
defined as the lattice S , where sl= {k:k=1..K}, and k is a generic
node. Each node of the lattice S' corresponds to a different region
rm0, and is associated with a vector of variables f(k)l . The i-th element
of f(k) indicates the i-th attribute of region k (c.g., area, perimeter,
average gray level, shape factor, cte.).

The neighbourhood system W1 associated with the virtual sensor at
level 2 is obtained by representing observations as a region-
adjacency graph (RAG) [8]: pairs of nodes are considered as
neighborhoods if the related regions share a perimeter portion.
Relational attributes refer to links between nodes {¢.g., length of the
shared perimeter). Given alattice s'and its neighbourhood system
W', an a-priori model of the attributes of a region can be defined by
letting f(k) to be a GMRF with respect to (S'. W'). The following
properties must be verificd: first, the effect of all regions, say h, on a
node k can be expressed by means of the only effect of the
neighbouring nodes of k. i.c.. Nx={j E S":k EN;}. This is the Markov
property for region level, and can be written as:

Pt()/{1(h):h=1..HH=P((k)/{1(j):] ¢ Ni (D).

Moreover, the probability that an atwibute will assume a value
included in a discrete set must be greater than zero, that is:

P(f(k)>0 (2)

A first order neighbourhood system has been selected, that is,
only the regions that are directly adjacent to a node k belong to Nx.
The neighbourhood system at level 2 is variant in respect to graph
nodes.

Given the pair (s'wh,a global constraint can be {ixed to model
a-priori knowledge necessary to restore and segment observations of
the virtual sensor. The optimal configuration of

(F'=(f) k=1K}, R'={r(k):k=1..K}).

can be estimated, provided that an a-priori model of F' and R' on §!
is given by a Gibbs distribution, and that an observation model of the
virtual sensor is available. The estimation depends on the solution
(F+°, R0 provided by the Tower level result.

The estimation criterion usually followed when dealing with
single-level GMRF problems is the MAP (Maximum A-Posteriori)
criterion. According to this criterion, the f-value is chosen from a set
of variables F which maximizes the conditioned probability of f given
a set of observed variables G, that is:

. max_F P(F/G) = max_F P(G/F) * P(F) (3).

The two terms to be jointly maximized in (1) can be respectively
interpreted (3] as a model of how a sensor transforms the real world
represented by variables F into observations G (i.e., P(G/F)), and an
a-priori expectation about the values asswmed by variables F (i.e.,
P(F)). The Hammersley- Clifford theorem [S] allows one 1o express
the a-priori probability of a MRF F in terms of a Gibbs distribution,
i.e.

P(F)=1/Z exp(-U(F)/T) (4),

where Z is the partition function, T is the temperature of the system,
and U(F) is a data-dependent energy function that can be computed
in a local way. Under assumptions about the observation model it is
possible [1], to express Ugg as the sum of Ug, and Ugy, that is:

Urg = Ucr + Uk (5).

The Hammersley-Clifford Theorem makes the maximization of the
probability equivalent to the minimization of the related energy
function. It has been shown [2,3] that Ug/r can be regarded as a term
that charges for the differences between sensor observations and the
solution, and that Ur is a stabilizer that makes the extimation problem
well-posed.

3 MULTILEVEL GMRFs

The multilevel model for restoration and segmentation
processes is defined is defined by the energy functions at the image
and region levels.

31 IMAGE LEVEL
At this level, the GMRF model is given in terms of the function
PFORYOFLRY (6)

where F° is the observation process of the image level, R is the
labelling process which assignes a label to each pixel of the input
image, and GY is an initial measure of the observation related to the
estimated process data by the relation

G =F %N
and variance G >, Image bluring is considered negligible. A
hierarchical GMRF model of (6) defined by two coupled processes
has been considered: the observation process is performed at the
image level on aregular lattice, where each site corresponds to a pixel
in the digitized image; the labelling process consists in assigning
labels to all pixels on the basis of a p.d.f., as defined below. The p.d.f.
(6) can be decomposed into three terms

(7), where N is a white Gaussian noise with zero mean

P RYGP F RY=Pi(F ROHPAE RY/GHPRF RYGOF RY) (8)

where P ¢ is a term related to regularization constraints at the image
level, Py is a term derived from the evidence provided by the
physical sensor, and Pr is an expectation term supplied by the region
level. Using the Hammersley Clifford Theorem, (8) can be rewritten
as:

UFE RYGEF RY=Ui (B ROUME RYGHUREFE ,RYGOF R Y (9)

The problem of performing the segmentation of a scene starting from
data coming from a visual sensor is generally ill-posed, and requires
aregularization process. A weak smoothness constraint similar to the
one presented in [1], has been imposed on possible solutions, together
with a term which favours the expansion of a label in the related
process:
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In this way, data are approximated by a piecewise constant function,
as in [1]. The first sum is extended to all sites of the image process,
and, for each site, a first-order neighbourhood system with the
usually associated cliques is selected . The second sum is extended to
all sites of the lattice by considering the neighbourhing pixels of each
site. The term & »; is a Kronecker delta which couples the labelling
and the observation processes, and acts as the line process in [1].



Compatibility of the observation process with the measured data is
reached through the evidence term U 3 of the energy function
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The term Ur can be neglected in the minimization process, as all the
configurations of RO are assumed to do not depend from GO. The
third term Ux is an expectaton term which takes into account
suggestions coming from the higher level. U r can be expressed as
a sum of potentials:
0,0,.1 1 0,1 2
U (F°.R“/F R )=Z U_(R"/R )+Z =1, i) (12)
l i

This sum is extended to all sites of the lattice. The first term relates
the area of a region to its expansion probability: regions of locally
larger size are favoured to grow, as the related potential cost becomes
lower. The choice of a region expansion also depends on the values
of the intensity gradients between adjacent regions. In the following
table, a set of potential scores of cliques based on a second order
neighbourhood system are shown; it is worth-noting that these
potential depend on the area ot neighbouring regions, S(.).

The second term refers to the average grey level of aregion. This
term aims at favouring the aggregation of a pixel into a region
characterized by an average grey level closer to the luminance of the
pixel itself. '

F(r) = area of region r
@  F(A)<F(C) and F(B)<F(C)
©@®Ve(C) = 1.2 else V(C) = 2.0

® F(A)<F(C)
©@©Ve(A) = 0.4 else Ve(C) = 1.2

@  F(A)<F(C)
© ® Vc(A) = 0.4 else Ve(C) = 1.2

Table 1: Potential Cost of clique configurations for the
segmentation process at the Image Level

3.2 REGION LEVEL

At the region level, a set of measures for each region found at level
0 is considered as input. Regions are organized into a graph whose
nodes contain a set of attribute values which characterize the regions;
a branch between two nodes of the graph indicates that the related
regions are adjacent. The probability of being to be maximized at this
level can be expressed as:

P(F'R 76" (12)

where F! and R are the fields to be estimated at this level and G!
are the observations provided by the image-level process, that is:
G'=(F%R"13)

As at the image-level, it is possible to write the local a-priori
probability model as:

UE'RY/GH=U"F RHUWE RY/GH (14)

The ic part consists of two different terms which take into account
relational properties between adjacent regions, the first term is:

v, (FLrh=3 3 {(fi—fj)2+kuper(/>rij,PT)m_S)
i

where fj is the average grey level of a region j belonging to the set
of neighbourhoods of i, Ni; Py is the length of the common perimeter
between regions i and j; and P is the total perimeter of region i.
Consequently, to assign the same label to two adjacent regions these
must have both a similar average grey level and a long enough
shared perimeter. In general each property of a region can be used to
drive the merging process, that is:

1 1.
U, (F.R >=22{Ck(Fi,Fj)}
Ik

where Cx is a generic cost function for two neighbouring sites, and
f(i), £(j) are vectors of attributes of regions i and j.This term acts as
a stabilizer at the region level.

The second term of the cost function is:

1,1 1 2
Uy(F [ \R°/G )=§; ?&_i(fi_gi)
1

The cost function is higher for each site whose restored average gray
level fiy, (which is an estimation of the actual mean gray level), is far
from the average gray level, gi, which is originally assigned toregions
by considering the image-level output. In this way, the final result
depends on intermediate outputs provided by the lower-level virtual
sensor. The value of sigma is computed as the variance of the pixel
luminance inside region i, and is used as an uncertainty dependent
weight.Regions characterized by a spread histogram are considered
less effective in the computation of the global cost. The term Pr is not
included, as it implies the presence of hierarchically higher levels
which drive segmentation on the basis of the specific application
domain considered. '

4 RESULTS

Results are reported on a real image representing an airplane
displayed in Figl.a. After 100 iterations of the image-level process,
the image is splitted into several regions (see Fig.1.c); however, such
regions do not affect the accuracy of the contour of the object
contained in the image. After the region level process, the coarser
final segmentation shown in figure 1.d is obtained, which maintains
a clear discrimination between the airplane and the background; in
addition the plane shape contains small, though significant, regions
(e.g., the region representing letters and symbols by which the plane
can be identified). The restored image, shown in figure 1.b, obtained
at the end of the process appears very promising too. One can easily’
notice that the boundaries between the regions identified by the
proposed approach have been preserved. Finally, the graphs in figure
2 show the behaviour of the energy function, both in the case of the
image and region level processes (Fig. 2.b) and in the case of the
image level (Fig.2.a) process only. It appears evident that the
convergence at a correct segmentation result is obtained when both
levels are used in a reduced number of iterations.
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5 CONCLUSIONS

A multilevel GMRF model of image segmentation and restoration has
been presented. The model is suitable for a hierarchical network of
virtual sensors, and implies the development of distributed a- priori
models of observations at each level, and of top-down and bottom-up
dependences between adjacent levels. Resulls are comparable with
those obtained by a single-level approach, but require a lower
computational load. Future work will concern the assessment of
distributed optimization algorithms for networks of the proposed type
and an extension [9] of the proposed approach segmenatation of image
sequences.
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Figl from top to bottom: Original Image (Fig 1.a), Restored Image

(Fig 1.b), Segmented Image after the Image level Process (Fig 1.c),
and dafter the Region Level Process (Fig 1.d)
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Fig 2 (From top to Bottom): behaviour of the Energy Fuction when
only the Image Level is applied (Fig 2.a); behaviour of the Energy
Function when both levels are applied (Fig 2.b).
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