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RESUME

Résumé. Cet article porte sur le développement d’un nouvel
algorithme rapide 2D des Moindres Carrées Récursif en treillis
(2D FLRLS) . Nous illustrons son utilisation et ses
performances en tant qu’ annuleur de bruit 2D pour la
restauration d’images bruitées.

In the framework of real time applications, we are carrying
on different approaches to perform such a task either in
proposing new algorithms, or ad hoc architecture[12]. In such a
way, this paper is constructed as follows: In the introduction, we
give a short survey about the main contributions in 1 and 2D
recursive least squares fast algorithms and, in section 2, we
provide a brief outline for the derivation of a new 2D FLRLS
algorithm. The application for the restoration of noisy images is
included in section 3. Conclusions and further extensions are
given in section 4.

1. INTRODUCTION

Computational efficient 1D RLS (Recursive Least Squares)
adaptive algorithms have been used successfully in a wide
range of applications [1][2]{3][8]. Among the numerous papers
which has been published in the area of adaptive and fast

“algorithms, special attention has to be paid to the comprehensive
survey from the GRECO_TDSI [3]. One has to notice that only
few among these contributions deals with 2D  or
multidimensional cases. M. Najim and Youlal [4] developed a
2D N_LMS lattice and obtained high improvement in MSE
(Minimum Square Error) for adaptive restoration of images.
Boutalis et al. [5] introduced a technique for adaptive image
estimation based on the multichannel form of the FAEST.
Sequeira et al.[6] developed a 2D fast RLS transversal algorithm
version by using a similar approach for the 1D FTF derivation.
Amoumou(10] has proposed an extension to the multichannel
case.

H. Kaufman et al[7], have published a survey on 2D
parameter estimation techniques for image restoration and arose
the need of fast procedures for updating filter parameters.

In this paper, by using a geometrical approach technique
based on the orthogonal projection and by imposing order on the
2D sequence, we transfer a 2D LS problem into a similar 1D
multichannel forward and backward filtering problem and get an
exact recursive lattice LS solution for the 2D AR model:
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2DFLRLS. We also have extended to 2D FLRLS the joint
process estimator and applied it to the restoration of noisy
images. ‘

2. 2D FAST LATTICE RECURSIVE LEAST SQUARES
ALGORITHM(2D FLRLS)

2.1 THE 2D LS PREDICTION PROBLEM

A 2D data sequence with L*K pixels is shown in Fig. 1.
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Figure 1,. First Quadrant AR Mode! Support Region

‘We consider a general 2D AR image model as follows:

you,n)= Y, ayymi-inpHum,n)  (L1)
(ij)eR

Where R is the model support region, which is defined as
follows:

R={ i,j: (i20, j>0) L (i>0, j20) } 1.2)

We choose linear index order along columns, which are
described as follows: v

y(D=y(L-ij-1)  (>0,j>0) 13)

y(, j)=0 - (<0 14)
A 2D linear predictive filter is of the form:
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Ym,n2= Y, Fijyng-iny-) (1.5)
@ij)eR
Space recursive least squares (RLS) algorithms can be defined
as a technique, which estimates coefficients of model by
minimizing the accumulated squared error

m L-1 nz1
&)=, le(n)l+), 3, [eiP (16)
i=0 i=0 j=0
where: - e(i.{)=y(i.j)-¥(.) (.7

2.2 PRESENTATION OF THE ALGORITHM

First, let us introduce a linear scanning index n such that
n=n2*L+n1. As shown in figure 2, the 2D data y(n1,n2) can be

expressed as :
ymi.n2)=yi(n) Q.1
For the other channels yj(n) is given in terms of yi(n) as
follows:
yi(m=y1(n-(i-1)L) 22
Let us define:

a) Jx1 vector as follows:(I>>KxL)

x1(m=[y1(n) y1(n-1) ,..., ¥y1(0) 0....,0]
x2(m)=[y2(m) y2(n-1) ..., y2(0} 0,..., 0]

IM+1(M)=[yM+1(1) ,..., YM+1(0) 0 ,..., 0] (2.3)

b} JxK, forward/backward prediction vector spaces at mth
stage: (Ko=(N+1)(M+1)-1)

X5 =[xa(n) -+ xme1(m) X1 (0-1) - - Kngs1 (0-1) -

X1(n-m) - - Xy (n-m)] (24)
X =lxa(+1) - X (+1) X1 (0) - - Xne1(0)
--Xp(n-m+1) -« Xmer (n-m+1)] (2.5)
ymsr(m+1] ya(n+1)

Figure 2. Forward Prediction Matrix

Now, the normal eqations of 2D LS problem can be expressed
in a matrix form:

(X TXEMIAMm=(XE" T () 2.6)
-and an error vector is introduced as :
e1(m=x;(m-(X5Mam) @7

The sum of the squared errors in the RLS adaptive filter is
interpreted as the squared length of an appropriate defined error
vector. Elementary geometrical concepts are than used to
minimize this length[2].

In the vector space, g1(n) is orthogonal to the column space of

xEn . . Lo
m . Let us introduce the following projection operators:

Py=UUTUy*UT and P§=1-Py (2.8)
From (2.7), we can get

e1(m=Pxes x;(n) 2.9)

we will now discuss the mth stage forward/backward
prediction problems.

Let us define a multichannel forward prediction matrix

(Ix(M+1))
XFm)=xo@+1) . .. xm+1(0+1) x1(@)] (2.10)

and forward prediction error matrix at mth stage:
EE(m)=XFm)-Xn(n) 2.12)

A multichannel forward prediction problem can be defined as :
EL(m)=Pxz= XF(n) @2.13)

It projects the forward prediction matrix into the same column
space as for solving the 2D LS problem.

The multichannel forward error power is expressed as
follows:

e =(XF())"Pgzs XF(n) (2.14)

Similarly, we have:

XB@)=[xi(n-m)- - - Xpp41(n-m)] (2.15)
EBm=XBm)-Xnn) 2.16)

" EB(n)=Pxe» XB(n) (2.17)
e =(XB[))Pyzs XB(n) (2.18)
Now, we introduce the pinning vector as Jx1 vector :
o=[10-..0]T (2.19)

Thus, all the relationships at space position n=(ni,n2)(mth
stage):

xim)={y,(n+1) -+ ymu(+1) yi(n)] (2.20)

xBm)=[y1(n-m) ... ym1(n-m)] (2.21)
ehm=xim) -x'tn) (2.22)
m=xbm) -xpm) (2.23)

can be expressed with the pinning vector:

xf(m)=cT XF(n) , Xbm=cT XB(n)

efm=0"Pgrs XF(m)  ebm)=0TPyz XB(n)

We introduce the squared cosine of angle between the
columns space at space positions n and n-1(mth stage)

Ym(n)=cos 2(9)=0" Pxa= & (2.24)
For the joint process predictor, which models a 2D process

d(i,j) from a related process y(i,j), the extension is easy. It can be
interpreted as an orthogonal projection, that projects the vector

dj(n)(defined as y1(n)) into the column space XE;“.

&g (m=Pse=di (n)

Here, we have merely defined the components of the
algorithm. Due to limited space, we will only give a brief outline
of formulas. A complete derivation will be provided in [11].

2.3 SUMMARY OF THE 2D FLRLS ALGORITHM

We initialize the algorithm at n=0. The reflection coefficients
matrix Kf,(-1), KB(-1) and the joint lattice reflection coefficients



matrix H&" (-1) are set to zero, The inverse error covariance

matrix (e5:1)1 (e21)1 are set to the diagonal matrix with error
elements 1/a, a is a small positive constant.

For n=0, 1, ...

Initialize:

Xo@)=[ y2(0) - ym1(0) ]

Xp@)={ y2(n+1) -+ ymer(m+1) |
L™ &) e ™) !

1
&™) =(leg™ 5 -
L+x(mGey™ ) K m)T

g™ 1=(leg ™1y 1- (%Eg’n-l ) -1(g8(n))1~,—(g(n)(%;_gn-1 s
T LA™ Rm)T
&gy ee)!

wi wI
Ko(n)=Kopn-1)+
+RmCes ™ )T

X (xK(n)-Xp(xKf(n-1))
deg™ ! ()T
1+ )™ )T
X(xB(0)-X{(n)xKB(n-1))
ef(m)=x¥(n)-Xg(m)xKf(n)
eB(m)=xBm)-Xo(mxKh(@)
Yo(n-1)=1-%5(n)(e5 ") ! KE@)T

For m=1,2,..., N

KB@m)=(KB(n-1)+

(EF,n ).1_(l€F,n-1 )-l lﬁl,::‘l'l )-1(egl'l(n))Tefn-l(n)(%ei?l'l )—l
w1 =Ce )

L Yon-1 (n-1)+e,fn_1(n)(kle:‘-f‘1' 1y el )T
(e =G e

(klez’?l-z Yl 1 (-1)Te,  (n- 1)(%32{‘1'2 y!

Y- (-1, (- D en ) by (0-1)T

Ki . =KL m-1) + (el (m)-e5 ;(n-1)xKE  (n-1))
eny ) ey @-1)T

Yot (e y (1) (e 1) by 1 (1)

K2 m)=K?, (n-1) + (e}, (n-1)-ef ;(mxK® ;(n-1))
ey (eha )T

Yot - 1rel @) ey ()T

efam=ef, ,(n)-e5, 1 (n-HxKL ()

eh(m)=e, (n-1)-eky (XK, 1 (m)

Yn(1) =Ym-1(n-1)-f, ; @)L ) N (€6 ()T

X

X

For the joint process predictor, we add the order recur sions
as follows:

Initialize:

(HSY @)=(Hp” (@-1)+ (d(n)-xm)xHg” (n-1))
I G e ()
1+ ™ ) o)

e (m)=d(m)X3mxH3 (n)

o
s

For m=1,2, .., N

HYY (n)=HYY, (n-1) +(e2¥, (m)-€8,., (0-DxHSY, (0-1)
Qemy ) (a1

Y1 (Db 1 (- D e ) ey -1

X

ey ()=edY, (n)-e, , (n-1)xHEY, (n)

For the joint process predictor, the total number of operations
(multiplications and divisions) required per iteration of the
algorithm at m=N, is

LIN+D)M+1)249(N+1)(M+1)+11M2+15M+1

3. APPLICATION TO THE RESTORATION OF NOISY
IMAGE

A specific application of the 2D joint process estimator is a
2D noise canceller. For the image restoration problem, we
assume that the primary image d(i,j) is an ideal image s(,j)
corrupted by noise:

d(i,j)=s(i,j)+v(i,))

The reference input field y(i,j) is a 2D random field which is
correlated with the noise v{i,j). It is assumed to be such as:

B(Z171, Zo byd, H=v(, )

where B(Z1-1, Z-1) is a stable 2D polynomia.
The corresponding restored image is

8G-1, D=elY G, i

The stimulation of the proposed 2D FLRLS noise canceller is
performed by using artificial blurred image data for several -
signal to noise ratio(SNR). The primary image "Lena" at a
resolution of 256*256 pixels, is corrupted by an additive
Gaussian noise or a spatial periodic noise v(i,j). The input signal
to noise ratio is defined as:

Variance of the original image
Variance of the noise

SNR(dB)=10log;¢
The performances of this technique are expressed by using the
improvement in the SNR:

MSE of degraded image
MSE of restored image

Puse(dB)= 10log1g

The results reported inTable 1, 2 are obtained by setting:
B(Z1-1,22-1)=1-0.221-140.622-1+ 0.1421-1Z3-1

The results reported in table 1 are obtained by running the
proposed algorithm and the 2D LNLMS[4] algorithm 10 times
using different Gaussian noise sequences.

From these results, we can see that high improvement in
MSE has been achieved, even at very low input SNR, by using
the technique developed in this paper. Comparison with the 2D

(O}
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LNLMS noise canceller[4], it provides better improvement in
MSE.

4. CONCLUSIONS

A new 2D FLRLS algorithm and application for the
restoration of noisy image were described in this paper. This
algorithm  requires  about 11(M+1)K1 operations
(multiplications or divisions) per iteration , where (M+1) is the
number of channels, K1 is the total number of data used in the
2D filter. A reduction in the computational cost is obtained
when compared with the standard RLS algorithm(1.5K12). The
2D lattice NLMS algorithm is known to be more economical
than this algorithm in computational cost, but we can expect
better convergence of this new algorithm compared to the 2D
NLMS algorithm. Though the new algorithm has more
complexity in computation than its transversal form, it has nice
numerical properties. Further application for the restoration of
images in various context is on way. Results will be reported in
a future paper{11].
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Table 1: Result of 2D Noise Canceller

(Gaussian noise, Unit: dB, * FLRLS, **_LNLMS)

INPUT SNR 10.12 17.19 {506 }067 |-1.80
QUTPUT SNR* 2473 12430 | 2336 |21.73 |19.62
IMPROVEMENT* | 14.61 | 17.11 | 1880 }J21.06 |21.42
QUTPUT SNR** 19.06 §16.41 | 1440 {10.22 | 8.83
IMPROVEMENT** } 11.85 1922 }934 {955 ]9.63
Table 2; Result of 2D Noise Canceller
Periodic noise, Spatial Frequency=0.01, Unit: dB)
INPUT SNR 11.38 |35.51 }3.65 }-0.17 |-1.88
OUTPUT SNR* 30.38 125.70 {23.59 | 18.96 | 16.63
IMPROVEMENT* {19.00 §20.19 {1994 ]19.13 | 18.51
OUTPUT SNR** 23.23 115.55 1 13.77 | 8.55 |5.80
IMPROVEMENT** | 11.85 ]10.05 { 10.i3 }8.72 ]7.68
*.-2D FLRLS, **_.2D LNLMS

(@)

Fig. 3 (a) Noisy image with SNR=-2dB(Gaussian) (b) Restoration_ wiLh
SNR=19dB(2D FLRLS) (c) Noisy image with SNR=-2dB(Periodic noise)
(d) Restoration with SNR=17dB (2D FLRLS)



