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RESUME

Une nouvelle approche pour le filtrage d’images en couleurs
est proposee, basee sur I' ordre statistique de vecteurs. Les images
en couleurs peuvent étre considerées comme des champs de vec-
teurs bidimensionnels, dans lesquels chaque composante vec-
torielle correspond d un canal couleur. L'utilisation des tech-
niques d’ordonnement vectoriel nous permet d'etendre les con-
cepts des filtres d’ordre statistique monochromes aux traitements
multicanaux. L’ avantage de cette methode sur les approches tradi-
tionnelles basees sur des traitements scalaires independants des
composantes couleur est que cette methode utilise les corrélations
du signal et du bruit entre les differents canaux afin d’ameliorer
les performances de filtrage.

Nous presentons deux filtres d’ordre statistique de vecteurs:
le filtre median et le filtre de moyenne trimmé en . Ces filtres sont
testes avec differents bruits multicanaux dont des bruits gaussien,
exponentiel et impulsif. Les performances de ces filtres sont
comparées d celles obtenues avec une approche scalaire et des
ameliorations sont constatees concernant la reduction des bruits et
la préservation des contours.

1. INTRODUCTION

The use of colour information has become very important in
the fields of image processing and computer vision. Previous work
on the processing of colour images involved the application of the
techniques developed for monochrome imagery to the different
spectral components of the colour image separately. Some good
results have been obtained using separable processing, but better
results can be obtained by processing the colour image using vec-
tor methods and taking advantage of the correlations between the
different image components in the algorithms. This type of pro-
cessing was impractical in the past because of the large storage and
processing time requirements, but now becomes feasible due to the
availability of increasing computing power and memory at low
costs. Recent research in colour image coding, segmentation, and
restoration has focused on trying to realize these advantages.[1-3]

In this paper we propose filtering algorithms based on robust
estimation theory and order statistics, such as the median filter and
L-filters. These will be examined due to their good behaviour in
the presence of additive white Gaussian noise, long tailed additive
noise, and impulsive noise.[4] It has been found in monochrome
digital image processing that order statistics filters are especially
suitable because of the failure of classical linear filters in dealing
with the nonstationarity of the images and noise. Also, the most
important reason for the use of order statistic filters is that they
have excellent edge preservation abilities and it is well known that
edge information is very important in image perception.[5)

Each colour point or pixel in an image can be described as a
vector, in which the components are the three primary colours: red,
green and blue. Thus a colour image can be represented as a two
dimensional field of vectors. Processing done in a scalar manner
ignores correlations between the colours, whereas processing on

the vector image inherently includes these correlations and takes
advantage of them.
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approach of applying scalar processing to each of the channels
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and noise correlation to improve the image filtering capablity.

We present two different vector order statistic fiters, the
median filter and the o-trimmed mean, a type of L-filter. These
filters are evaluated using a variety of multichannel noise
processes, including guassian, exponetial and impulsive noise.
Their performance is compared to the scalar approach and
improvements are shown in the noise reduction and edge preserva-
tion properties of the filters.

In the proceeding sections of this paper, we will look at a
number of topics. Initially, we will discuss scalar and vector
median filters. We will then extend these ideas to general L filters
by defining a vector ordering scheme. Some of the results of tests
of these filters performed on colour images with noise will then be
presented with comparisons to scalar processing.

2. Median Filtering

The median is widely used in statistics, often due to the fact
that it is the maximum likelihood estimator of location for random
variables with the biexponential distribution.

f =g e <n

It has found much use in the filtering of images due mainly to its
edge preservation properties and its ability to filter out impulsive
noise.[6] These noise impulses can be brought about by the record-
ing media, the transmission channel, or the acquisition unit and

cannot be removed effectively by conventional linear filters.
Given n observations x; , i=1,...,n, the median of the set of

x;’s denoted by X,y is given by

Xmed ={

where the x ;) are the ordered sequence of observations x;
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The x ;) is also called the i order statistic .

An alternative definition of the median is given as the x; that
minimizes the L error norm to the set of x;.

£ =3 5x] 3

i=1

f Comed) SFO) ¥ Xi ) Xpmea € {%i 5 i=1,001)

185D




786

This definition of x,,.4 is not exactly equivalent to the previous
one, because when n =2v both x) and x(y) will minimize the
L error norm. This difference is unimportant in-image filtering
applications because # is generally odd.

Now to extend the definition of the scalar median to the vec-
tor or multivariate median, the second definition presented above
will be used as there is no natural way to absolutely order multi-
dimensional data. Ordering of multidimensional data will be
further considered in the next section. The multivariate median of
n observations of x; , i =1,...,n, where the x; are k dimensional
vectors [x; ,Xi, , Xigs - - - ,xik]T, is given by
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the choice of the distance metric is arbitrary and we will choose
the Euclidean distance.

3. Ordering of Multivariate Data

Order statistics have played an important role in the robust
analysis of data contaminated with outlying observations and it is
this robustness that also makes them one of the most useful fami-
lies of image filters. For univariate or one dimensional data, the
definition of order statistics is well defined and has been
thoroughly studied.[7] Let the random variables X |, X»,...,X, be
arranged in ascending order of magnitude and written as

X(DSX(Q)S"'SX(") (5)

Then X is the so-called i % order statistic. Important order
statistics are the minimum X (1), the maximum X, and the
median X (). Generally, the X; are independent identically distri-
buted (iid) random variables, having cdf F (x). Thus the cdf F,(x)
of the r* order statistic X () is given by

n . .
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Additional details of the statistical analysis of one dimensional
order statistics can be found in [7].

Now to extend these concepts to multivariate data, let us
denote X as a p-dimensional multivariate or multiple random vari-
able,

X=[X1.Xq0,.... 5,07

where X1,...,X, are random variables. Now, let x;,...,x, be
n random samples from the multivariate X. Each of the x; are p-
dimensional vectors of observations.

1

X; = [x;l,xiz, e ,x,-P

We would like to arrange the xi,...,X, in some sort of order.
The notion of data ordering which is very natural in the one
dimensional case does not extend in a straightforward way to mul-
tivariate data. There is no unambiguous, universally agreeable total
ordering of n samples x;,Xs,...,X, , but there have been many
ways proposed to attempt multivariate ordering. These so called
sub-ordering principles can be separated into 4 categories; margi-
nal ordering, reduced or aggregate ordering, partial ordering, and
conditional ordering.

In marginal or M-ordering, the multivariate samples are
ordered along each one of the p-dimensions independently. For
colour signals this is equivalent to the separable method where
each one of the colours is processed independently. The i** margi-
nal order statistic is the vector

Xy =Gy, X Gy - - X, 1T
where x ;) is the i largest element in the r* dimension or chan-
nel. The marginal order statistic x;, may not correspond to any of
the original samples Xy, ..., X, as it does in one dimension.

Reduced or R-ordering is also called aggregate ordering.
With this type of ordering each multivariate observation x; is
reduced to a single value d; by means of some combination of the
component values. The metric that is employed is frequently the
generalized distance to some point o,

d; = (xq~0) T} (x;~00) 0]

The samples are then arranged in ascending order of magnitude of
the associated metric values d;.

In partial or P-ordering the objective is to partition the data
into groups or sets of samples, such that the groups can be dis-
tinguished with respect to order, rank, or extremeness. This type of
ordering can be accomplished by using the notion of convex hulls,
but the problem with this is that determination of the convex hull
is difficult to do in more than 2 dimensions. The other drawback is
that there is no ordering within the groups and thus it is not easily
expressed in analytical terms. These properties make P-ordering
infeasible for implementation in digital image processing.

In conditional or C-ordering the multivariate samples are

. ordered conditional on one of the marginal sets of observations.

Thus the i order statistic would be
I

Xy = Xay - Xy, 0 00 ta X,

where x; is the marginal order statistic of the first dimension,
and X[i); »J=2,..p are the quasi-ordered samples in the other
dimensions conditional on the i” ordered sample in the first
dimension. The marginal samples used for the ordering may be the

original ones, or those derived from some preliminary co-ordinate
transformation.

The ordering scheme that we propose to use is a variation of
R-ordering, where the distance metric used is the L error norm to

the set of x; or equivalently the aggregate distance (d) of each
point from all the other points.

n
d;= 3 X% ®
k=1
The d; ,i=1,..,n are then arranged in order of magnitude and the
associated vectors will be correspondingly ordered.
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Here the X(; have a one to one relationship with the samples x;
unlike marginal ordering. This ordering scheme was chosen for a
number of reasons. The first is that by using this distance metric,
X1y is the vector median of the data samples. Secondly, large
values for the aggregate distance (8) give the most natural and
accurate description of outliers or extreme values.[8] Thus we get
some sense of an absolute order for the data vectors from the
median to the most outlying value without any need for apriori
information about the signal and noise distributions. The ordering
can be entirely based on the data and is independent of an origin or
fixed point in space.

4, ORDER STATISTIC FILTERS
L-filters, also sometimes called order statistic filters, are

based on L-estimators. An L-estimator has the following definition
for one dimensional data:

n n
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where the a;’s are a set of weights that define the estimator’s per-
formance and are normalized. This can now be applied to image
filtering as a local area operation. The definition of the 2 dimen-
sional L-filter is

n
Vi = XX (10)
k=1

where y;; is the output pixel, x ), k=1,..,n are the ordered samples




contained in the input window centered at pixel (i,j), and
ay, k=1,..,n are the filter coefficients that still must adhere to (10).
For an appropriate choice of the filter coefficients, the L-filter can
be defined as the median and the o-trimmed mean, respectively

1 k=v n=2v+1
% =10  otherwise an
1 .
n(1=20) k=an+l,...,n—0n
%=1 otherwise 12

Similarly, we can define the multi-dimensional L-filter, using the
p-dimensional vector image definition, as:

oo
Vi = 28 X 13)
k=1
where now y; is the output  pixel  vector,
— T 5
Xy =Xy - Xw, 1 k=1,.,n are the ordered vectors con-
tained in the input window centered at (i,j), and
a=[a,... ,akp]T,k=1,..,n are the filter coefficient vectors. The
a, must now satisfy
& T
Ya;=e=[11,.,1] (14)

i=1

We can now define the o-trimmed mean for p-dimensional
vector images

k=n(1-2c)
yij= X Ak Xg) (15)
k=1
o ; ;|7
where 2 —[n(l—Za) > n(1=20) 7 n(1=200)

The o-trimmed mean as above defined will reject 2a% of the out-
lying samples and the arithmetic mean of the remaining samples
will be calculated. This filter will have good performance in the
presence of Gaussian noise and will still preserve edges well.

5. Multichannel Noise Processes

To test these proposed filters and evaluate their performance ,
we need to model some noise processes. Since the original signal
is in our case multichannel, the noise must also be multichannel in
nature. The problem of modeling noise in real digital colour
images (i.e. digital television , colour digital photography, satellite
photography, etc) is currently unexplored and beyond the focus of
this paper, thus we will consider general classes of noise probabil-
ity distributions, limiting ourselves to additive noise. To fully
examine the performance of the filters, noise processes with short
tailed , long tailed , and extremely long tailed distributions would
be useful.

A useful short tailed noise distribution is the multivariate
gaussian. Its pdf for 3 dimensions is

Foo= expl—5 @ E () 16)
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where 1 = [1];,72,M3]” is the vector of means, and X is the covari-
ance matrix. If the distribution is zero mean and uncorrelated with
equal variance, i.e. N = [O,O,O]T and Z =1, then (16) reduces to

—12x}+xg4xd)
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For long tailed noise we will use a distribution that is a mul-
tivariate extension of the scalar biexponential distribution given in

(1). This 3 dimensional exponential distribution can be written as

Fe=Ke ™M | 2>0 (18)
or

3
F Gayw,a3) = B g M 9)

Finally, for extremely long tailed noise we will use the mul-
tivariate gaussian noise as defined above (17) contaminated with
a% positive and negative impulses. This distribution can be writ-
ten separably as -

Fxrxax3)=F (x1)f @2)f (x3)
fay=01-oe™"? + —‘218(x+255) + %8(}:—255)

(20

where 8(-) is the delta function.

6. Simulation Results

A set of experiments was performed to assess the perfor-
mance of the vector order statistic filters. Two different filters were
tested; the vector median (VM) and the vector o-trimmed mean
(VoTM) filter. These filters” ability to remove additive noise from
colour images was assessed. Six noise distributions were used:
gaussian noise with variance 30 and 50 , exponetial noise also
with variance 30 and 50 and o contaminated gaussian noise with
variance 30 and o = 5%, 10%. To evaluate the performance of
these filters the mean square error (MSE) is calculated and is tabu-
lated in Tables I and 2 . In these tables comparison of the vector
filter is made with a similar filter applied in the separable or scalar
manner. The percentage change in the MSE is given, where a
negative percentage means that there was a reduction of the MSE
by using the vector filter. This percentage change is the average of
the change observed for a number of different colour images.

Percentage Change in MSE for VM versus SM

mse +/- % 3x3 window | 5x5 window
gaussian, variance=30 i8.2 10.6
gaussian, variance=50 21.6 17.8
exponential, variance=30 1.4 -2.0
exponential, variance=50 || = 4.1 1.0
5%-contaminated gauss 20.0 12.3
10%-contaminated gauss 217 14.2
Table 1
Percentage Change in MSE for VaTM versus SoTM
mse +/- % 3x3 window | 5x5 window
o=11.1% a=12%
gaussian, variance=30 1.2 -8.0
gaussian, variance=50 7.4 -5
exponential, variance=30 -9.2 -10.9
exponential, variance=50 -8.0 -9.3
5%-contaminated gauss -3.1 -6.7
10%-contaminated gauss -4.1 -5.4
Table 2

We present these quantitative results here, but we have found
that these results do not correspond well to the subjective evalua-
tion of the image quality. This is because the MSE does not prop-
erly take into account the nonlinearity of visnal perception. This is
especially true for colour images where the perceptual colour
space is highly nonlinear.[9]

Table 1 shows the results for the vector median filter (VM).
We can see that almost all the results are positive, i.e. there is an
increase in the MSE for the vector median over the scalar median.
There is even an increase for the case of exponential noise, even
though the vector median is the maximum likelihood estimator for
that distribution. From observing the fiitered images we see that in
the flat areas of the image, the scalar median (SM) provides more
smoothing, but in the edge areas the vector median better preserves
the sharpness of the edges. Overall, the performance of the two
filters in many cases is visually indifferent unless examined
closely.
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From table 2 we can see that the MSE is reduced in most
cases for the VoITM filter with the highest reductions for exponen-
tial noise. One of the most important observations that can be
made from viewing the filtered colour images is that the vector
filters are superior in preserving the edges and texture in the
image. We can see this clearly in Figure 1 below, which shows a
surface plot for one channel of a colour step image, that has been
filtered by the VaTM filter and the SoTM filter respectively.
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Figure 1

Also very noticeable in both the exponentiial and G-contaminated
gaussian noise cases is the presence of impulses or spikes in the
scalar filtered images. From figures 2, 3 we can see that the vector
filter removes these impulses more effectively. The VoTM also
maintains the colour of the original image more truly, whereas in
the scalar filter colour artifacts are created such as green dots at
edges in the image.

Lastly we have also applied these filters to an noisy image
that has been digitized off video tape. The results of filtering this
image are shown in figures 4, 5. We can see that the vector filter
removes the streaks very effectively and also that the edges are
sharper and the colour more intense.

Figure 3: VATM 3x3 window, 10%-contaminated guassian noise

7. Conclusions

A method for ordering multivariate or vector data has been
proposed that allows for the extension of scalar order statistics to
m-dimensions. These vector order statistics were applied to the
filtering of additive noise from colour images. Two vector L-
filters were tested and compared to similar scalar filters applied to
the image components separately. These filters were assessed
using multichannel noise distributions with varied characteristics.
It has been found that the vector median filter exhibits very similar
characteristics to the scalar median and that for many noise distri-
butions the output of the two filters is almost visually indistin-
guishable. In contrast, the vector o-trimmed mean filter has shown
significant improvements in edge preservation and impulsive noise
removal.
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Figure 5: VATM 3x3 window, corrupted video image




