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RESUME

On propose une nouvelle méthode pour estimer le nombre D
de sources ponctuelles & longue distance au moyen d’un réseau
de M > D capteurs. La méthode, qui exploite la cyclostation-
nairité des signaux modulés, est basée sur la Décomposition en
Valeurs Singuliers de la matrice de corrélation ciclique des sig-
naux prélevés et se montre supérieure aux approches classiques
lorsque le signal utile est trés faible et noyé dans un bruit &
bande large et/ou dans une interférence & bande étroite et aussi
lorsque le bruit est arbitraire (par exemple, non-stationnaire) et

inconnu.

1. Introduction

A key issue in the multiple-source localization problem is the
detection of the number of signals.

In many physical problems, with radar and sonar as exam-
ples, the outputs of an array of sensors are collected over some
time interval and used to extract the spatial structure of multi-
ple radiating sources. These are assumed to be located in the far
field of the array so that the received wavefronts can be modeled
as planewaves.

With reference to narrowband signals impinging on the sen-
sor array, most of the methods [1-4] to estimate the number of
sources exploit the eigenstructure of the array covariance matrix
(ACM) of the received signal vector by evaluating the multiplic-
ity of the smallest eigenvalue of the ACM. The major drawback
of these methods is that the ACM is unknown, and only an es-
timate from a finite sample size is available. Consequently, the
resulting ACM eigenvalues are all different with probability one,
and, hence, it can be difficult to determine the number of signals
simply by ’observing’ the eigenvalues. In [5] it has been proposed
a more sophisticated method based on a sequence of hypothesis
tests whose threshold levels, however, are very difficult to select.
Moreover, a new approach, which applies information theoretic
criteria for model selection, has been presented [6, 7] with refer-
ence to a zero-mean Gaussian stationary model for both signal
wavefronts and sensor noises. ‘

The above-mentioned methods require that the sensor noises
be uncorrelated and have the same variance (i.e., spatially white
noise). With reference to spatially nonwhite noise with station-
ary characteristics, the multiple-source localization problem has
been solved [8, 9], provided that, however, an estimate of the
noise ACM is available.

In adverse noise environments (low signal-to-noise ratios),
since a large amount of collect time is required to obtain sat-
isfactory performance, the assumption of stationary noise is not
generally reasonable and, therefore, the previous methods can-
not be utilized unless some cumbersome procedure for updating
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noise statistics is performed.

Recently, a new method has been proposed [10] for arbitrary
(not necessarily stationary) sensor noises and interferences. It
does not require knowledge of the noise and interference co-
variance matrices to estimate the number of radiating sources
and their locations. The approach reasonably assumes that the
source signals are cyclostationary. Therefore, it automatically
discriminates in favor of the signals of interest (SOI's) against
noise and interfering signals on the basis of their known spectral
correlation properties [11]. The main advantage of the proposed
method is its immunity to arbitrary (stationary or nonstationary,
spatially white or coloured) and unknown wideband and narrow-
band interfering signals in strongly adverse conditions. In partic-
ular, it provides good accuracy also when the interfering signals,
whose number can be greater than the number of sensors, ex-
hibit an arbitrary degree of correlation amongst themselves and
arrive from directions arbitrarily close to those of the SOI’s.

Since the method is based on the property that the rank of the
cyclic ACM of the received signals is just equal to the number of
source signals, in [10] an algorithm is proposed which estimates
such a rank on the basis of the magnitude of the determinants
of the leading principal submatrices of increasing order. !

The present paper is aimed at reducing the quite large sample
size required by the method considered in [10] to obtain a satis-
factory performance. More specifically, it proposes a new algo-
rithm for the cyclic ACM rank estimation based on the Singular-
Value Decomposition (SVD) which, in recent years, has been
extensively applied in a number of least squares, spectral esti-
mation and system identification problems for its computational
efficiency. Moreover, the performances of the algorithm pro-
posed in [10] and of the new one are evaluated and compared, in
terms of average sample size assuring an adeguate error proba-
bility (i.e., the probability that the number of source signals'is
uncorrectly estimated).

11t is worthwhile to note that the well-known eigenvalue-based approach
for rank determination cannot be adopted in this case since the cyclic ACM
is a non-Hermitian matrix.
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2. The new approach

If one considers a passive array consisting of M sensors and as-
sume that D narrowband sources (D < M), centered around a
known frequency fo, impinge on the array from the directions of
arrival 8y,0s,...,0p, the M-vector x(2) of the received analytic
signals can be expressed as

x(t) = A(8)s(t) + n(?) (1)

where s(t) is the D-vector of the analytic SOI's, n(t) is the M-
vector modeling the noise and interference signals and A(6) is
the M x D matrix of the steering vectors.

The source-localization problem is solved in {10] by exploiting
the cyclostationarity exhibited by all modulated signals [11], but
which is ignored in the traditional methods. The approach is
based on the properties of the cyclic conjugate cross-correlation

function (CCCF) defined by:

Rz,»z;.(‘f) A < Blzi(t + 7/2)z;(t — 7/2) exp(—j2rat) > (2)

where < - > and E[:] denote the time and ensemble (respec-
tively) average and a is the cycle frequency parameter. For sta-
tionary processes the CCCF is zero for any a # 0. Moreover, for
many carrier-modulated cyclostationary processes, R:;z; (r)#0
for some values of o and 7. 2

By assuming that all SOI’s exhibit cyclostationarity at a same
known value of the cycle frequency a but that the noises and
interferences do not, the cyclic conjugate cross-correlation matrix

(CCCM) of the received vector is given by:

R%. (1) = A(O)RE,. (r)A”(6) ®3)

where T denotes the transpose.

Equation (3) shows that, by an appropriate selection of a,
the contributions to the CCCM from arbitrary (not necessarily
stationary and/or spatially white) noises and interferences van-
ish. Such a result allows us to predict for this approach, based
on the properties of an estimate of the CCCM, satisfactory per-
formance even in strongly adverse interference environments. In
particular, the method can provide good accuracy also when the
interfering signals, whose number can be greater than the num-
ber of sensors, exhibit an arbitrary degree of correlation amongst
themselves and arrive from directions arbitrarily close to those
of the SOI's.
require the knowledge of the noise statistics which is essential in
the traditional methods.

Assuming that the matrix A(6) has full column rank (i.e.,

Moreover, the solution to the problem does not

the direction vectors are linearly independent with one another)
and the signal CCCM Rg,.(7) is nonsingular for a known value
of the lag parameter 7, the rank of the matrix R%,.(7) is equal
to the number D of source signals, provided that M > D.

Finally, let us note that the matrix R%,.(-) is unknown and,
therefore, it is necessary to estimate it from a finite sample of
size 2K + 1:

Ry (m) =

x(l+m)xT (1) e 72+3)  (4)

2The choice of the CCCF is appropriate when « is related to the carrier
frequency. On the other hand, if « is related only to possible periodicities of
the modulating signals, such as a keying rate, this approach can be modified
by using the cyclic cross-correlation function R, (7).

3. Algorithms for CCCM rank esti-
mation

Determining an appropriate statistical test for the estimation
of the rank of the matrix (4) is a challenging task due to the
nonstationarity and non-Gaussian behavior of most signals of
interest. Hence, it is necessary to carry out some “ad hoc” pro-
cedures whose characteristic parameters can be fixed on the basis
of experimental evidence. In [10] the rank estimation has been
M)

of the determinants of the leading principal submatrices of in-

performed on the basis of the magnitude D; (7 = 1,2,...
creasing order. More specifically, a two-step procedure, which
requires the setting of just one meaningful parameter, has been
adopted. In the first step one evaluates the D}s for increasing
values of the sample size in order to single out a value assuring
a satisfactory noise rejection, i.e., such that any increase of the
sample size does not significantly affect the values of Djs. The
procedure is described in detail by ihe flowchart of Fig.1, wheie
the notation D;(n) is introduced to denote D; evaluated for a
sample size n. Let us note that, although the parameters ko, no,
v and T have to be fixed, the only one playing a key role in the
whole procedure is the convergence threshold T¢: its value can
be selected taking into account the trade-off between reliability
of the estimates and observation time.

As result of the first step, one obtains that the magnitudes
Dis of the determinants are weakly affected by noise and inter-
ference. Moreover, if a normalization of f{;x.(m) is performed

by scaling all terms of the matrix by the factor

1/M* Z | Bay(m) |
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the Dis for i = 1,2,..., D (in the following referred to as “sig-
nal determinants”) are of the same order of magnitude of each
other. The Djs for i = D + 1,...,M (“noise determinants”)
are, on the contrary, very small compared with the other ones
and strongly decrease as the index ¢ increases, in that they refer
to submatrices in which 7 — D rows are linear combinations of
the other ones, except for very small noisy terms. On the basis
of these considerations, in the second step of the algorithm one
determines the value of the index 7 which maximizes

(2

&= —7——
Di1Dips

Do AL 1=12,...,M—-1 (6)
and assumes the number of source signals equal to this value of 4.
In other words, such procedure evaluates the number of sources
by detecting the “edge” between the different behaviors of signal
and noise determinants. It is worthwhile to emphasize that in
this second step no threshold test is performed, avoiding so any
parameter setting problem.

The algorithm for rank determination proposed in this pa-
per is based on the SVD, which in recent years has received
a great attention because of its high computational efficiency.
More specifically, with reference to the CCCM (3) (i.e., in the

ideal case of infinite-time conditions) one has:

(7

with s; (i =1,2..., M) denoting the i-th singular value (SV) of
R, (-). In practice, the SV’s of the matrix (4), say $;, do not
satisfy the relation (7); in particular §p41,...,3ar, say the noise
SV’s, will be small (provided that R$.(-) is a good estimate
of R§y.(-)) but not necessarily zero. Therefore, the problem

$1282...28p>8pr1=...=sy=0

arising in rank evaluation is to determine the number of SV’s

significantly different from zero (1.e., the number of signal SV’s),
or equivalently, the number of SV’s very close to zero (i.e., the
number of noise SV’s). According to the previous mentioned
difficulties to derive a statistical test, again an “ad hoc” decision

strategy is proposed. Each step of the procedure consists of:

i) evaluating for the M — 1 subsets of SV’s

Gié{§i1§i+ly“'1‘§M} 7‘=1)27 ’M—l (8)
the dispersion coefficients
2
AN (9)
=
where
1 ;- 10
HAY - 5
o M-i+1 E Sk (10)
and
H ;- 11
7 g o e ) (1)

are mean and variance of Gj;

i) performing the decision according to the rule

D=y (12)

with d;« = maxd;.
%

Such a rule can be justified by considering that the set of
SV’s can be partitioned in two classes: the noise SV class and
the signal SV one. The former consists of the elements close to

zero; the latier is formed by the remaining ones. It is not difficult

to intuitively accept that the maximum dispersion coefficient will
very likely occur in correspondence of the subset Gp containing
all the noise SV’s plus the smallest signal SV, provided that the
separation between the classes is sufficiently large and, within
each class, the SV’s are of the same order of magnitude.

Figure 2 shows the implemented procedure: once evaluated
the decision variables di(n), with n again denoting the actual
sample size and, hence, estimated the number of signals, the
magnitude of the difference between the two largest decision
variables, say ¢, is determined to update the variable I' which
controls the end of the procedure by a test whose threshold sets
the reliability degree. The choice of the updating rule of the
variable I' is motivated by the need to state the end of the pro-
cedure not only on the basis of a large maximum but also on the
ground of a sufficiently large number of steps characterized by
the same estimate with, however, small values of .

We present now simulation results to evaluate and compare
the performance of the SVD-based method with that of the
determinant-based one. The examples assume a passive uni-
form linear array with interelement spacing A = ¢/2f; (¢ is the
propagation velocity of the wavefront) and consider amplitude-
modulated (AM) source and interfering signals with modulating
signals modeled as independent zero-mean stationary processes,
obtained by filtering white Gaussian processes by a Butterworth
filter of first order with a fractional bandwidth of 0.04. The

SOI's have carrier frequency fo, and the interfering signals have
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carrier frequencies unequal to fo. It follows that the SOI's are
purely cyclostationary processes with period 1/2f [11]. More-
over, the only value of a such that RZ,.(r) # 0 for some values
of 7 is a = 2fy. Therefore, the choice of AM signals leads one
to consider the CCCF at a = 2f; whose magnitude peaks at
7 = 0, which becomes the obviously selected value for the lag
parameter. The wideband noises are modeled as white Gaussian
processes uncorrelated from sensor to sensor.

The numerical results refer to 100 trials of the following
experiment: four sensors, two SOI’s, five narrowband interfer-
ers, wideband sensor noises. The power of all desired and in-
terfering signals is fixed at 1 unit. The DOA’s of source and
interfering signals are fixed at: 6, = —0.3rad., 6, = 0.2rad.,
0, = 01, = 01, = —0.3rad., 01, = 05, = 0.2rad. The carrier fre-
quencies of the interfering signals are chosen as follows: 0.80f,,
0.85f5, 0.90f5, 0.95f, and 0.98f,. It is worthwhile to note that
in this particularly severe noise environment, characterized by
a number of interferers greater than the number of sensors, the
conventional methods fail. For the determinant-based procedure
the values ko = 80, ng = 32k = 2560 and v = 0.75 (see flowchart
of Fig.1) have been chosen for the parameters, whereas for the
SVD-based procedure the unique parameter ng (see flowchart of
Fig.2) has been fixed at no = 2560.

Figure 3 shows the probability Pg that the number of SOI's is
uncorrectly estimated as a function of the required average sam-
ple size 7@ for both procedures and for two values of SNR. The
results show that the SVD-based method largely outperforms
the determinant-based one. For example, to assure an error
probability of 10% when SNR=0dB, the SVD-based method re-
quires about 7000 samples, whereas, the determinant-based one
needs about 17000 samples. Moreover, a better improvement is
achieved in correspondence of lower values of Pg.

With reference to the SVD-based procedure, and for the same
noise and interference environment, Figure 4 shows Pg and W as a
function of the threshold T¢. For example, the results show that,
for SNR=0dB, values of T¢ belonging to the interval (1, 3) assure
a good compromise between observation time and reliability of
the estimates.

Finally, we note that, although a quite large number of sam-
ples is required in order for interferences and noises to decorre-
late in the CCCM estimates, the performance is fully satisfactory
even in these adverse operative conditions where the DOA’s of
the desired and interfering signals are the same.
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