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RESUME

This paper presents a new method for the high
resolution estimation of the Directions Of Arrival
(DOA) of multiple wide band plane waves impinging on
a linear array of equispaced sensors. The proposed
method does not require preliminary estimates of the
DOA  and possesses the interesting feature of
providing asymptotically unbiased estimates when the
Cross Spectral Matrices tend to their exact values.
Furthermore, simulation results show that this
approach leads to performances comparable to narrow
band MUSIC with same amount of data at the central
frequency, both in terms of resolution and mean
square error of the estimated DOA .

I- Introduction

The estimation of the DOA of multiple wide band
plane waves from the Fourier transform of an array
output requires the joint processing of all the
narrov band components available in the frequency
band of interest. In this context, several solutions
based on extensions of the narrow band MUSIC scheme
have been proposed.

The simplest one is the incoherent MUSIC algorithm
[1} in wvhich narrow band signal subspace processing
of each narrov band component is followed by an
averaging of the spatial spectra over the frequency
band. This way of proceeding is known to reduce the
fluctuations of the spatial spectrum at each
frequency bin, but it does not increase the
resolving power which is essentially limited by the
number of observations available at each narrow band
component.

Later, Wang and Kaveh proposed the so-called
Coherent Signal Subspace Method (CSSM) [2]. Their
method requires preliminary estimates of the DOA
that may be obtained by conventional wide band
beamforming. At each frequency, the estimated DOA
are used to determine focussing matrices that map
the associated frequency dependent steering vectors
to the corresponding steering vectors computed at a
reference frequency f,. The focussing matrices allowv
the linear transformation of the narrov band
components into a fictitious observation that would
be measured if the sources were narrow band with
center frequency f,, and from which the DOA can be
obtained by applying the MUSIC algorithm. Given a
set of preliminary estimates of the DOA, there
exists an infinity of possible choices for the
focussing matrices -several examples have been
studied in [2,3,4]- and it has been shown that good
focussing matrices are unitary [4]. However, this
method has the major drawback of requiring

preliminary estimates of the DOA.

To overcome this problem, a new class of focussing
matrices has been developped in the case of linear
arrays of equispaced sensors [5,8]. These focussing
matrices are designed to interpolate the spatially
sampled wave field measured by the sensors. The aim
of this interpolation is to create at each frequency
fictitious sensors such that the product of the
inter-element spacing by the frequency is kept
constant over all the vide frequency band. Given two
frequencies f and f;, this procedure is an attempt
to map all the steering vectors at f to the
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corresponding steering vectors at f, by a linear
transformation that depends only on f and f,. Though
this method performs well, it must be pointed out
that these ideal focussing matrices depending only
on f and f, do not exist, so that this mapping is
approximate. & similar idea which avoided the
computation of the focussing matrices vas
independently derived in [6] using in the
interpolation step both AR and windowed periodogram
spectrum estimation techniques for the spatial
spectrum.

Ve present in this paper an alternative method in
the case of linear arrays of equispaced sensors. It
has the advantage of not requiring preliminary
estimates of the DOA and provides asymptotically
unbiased estimates when the estimated Cross Spectral
Matrices (CSM) at each frequency bin tend to their
exact values. Section 2 derives the proposed
algorithm for a spatially white noise, though the
algorithm is easily extended to deal with a
spatially colored noise with known CSM. Section 3
presents some simulations and comparisons with the
incoherent wide band MUSIC algorithm and the CSSM.

II- The proposed method

Let us consider a linear array of N equispaced
sensors with spacing d which receive the plane waves
generated by P uncorrelated sources in a medium with
velocity ¢. The source signals and the noise
measured by the sensors are assumed to be spatially
stationary band limited processes with flat spectra
in (f,-B/2,f,+B/2). The noise is supposed to be
spatially white. The estimation problem of the DOA
is referred to as a wide band problem when the
propagation time of any source signal across the
array is not very small compared to the reciprocal
of the bandwidth B. In a practical point of view,
this means that:

10(N-1)d/c > 1/B, (1)
and we consider in the sequel that this inequality
holds.

The CSM of the array output is given in
(£,-B/2,£,+B/2) by:

P

R(f):Zpr(f sing,d/c)D*(f sing,d/c)+ol, (2)

=4
wvhere: T
- D(v)=[1,exp(2inv),...,exp(2in(N-1)v)]*;
- 6,,...,6, are the DOA measured from broadside;
« Yyse++sYp are the source PSD’s;
. ¢ is the noise PSD.
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Due to the spatial stationarity hypothesis, R(f) is
hermitian Toeplitz, and this structure will be used
both in the estimation of the CSM’s and in the
derivation of the wide band algorithm.

Ve assume that the sensors outputs have been Fast
Fourier transformed over T consecutive temporal
intervals, so that the observation consists in a set
of TK complex vectors

Xt(fk)=[Xl,t(fk),...,
wvhere:

¥, ¢ (fy) denotes the DFT of the n-th sensor on
the t-th temporal interval at frequency £,;

. 1<k and f,-B/2=£f <£,<.. . <f=f,+B/2;

. 14T,

An estimate of the CSM R(f) at frequency f, is
readily obtained by averaging the periodogram and is
denoted by Rp.,(f,):

T

Rypp(f,)=T"} lxt(fk)xt*(fk). (4)
'’

Knowing that the exact CSM R(f) is toeplitz, we
force the estimate Ry ;(f,) to be toeplitz by simply
averaging along its diagonals. This wusual way of
taking the CSM Toeplitz structure into account
increases the cstimation precisicn; it is alsc known
to improve the resolution capability of Lhe MUSIC
algorithm. This estimate 1is denoted by R(f,) and
will be used in the remaining of this section.

The proposed method is based on the following
direct consequence of Caratheodory’s theorem [7]:
let A=(aij) be a NxN Hermitian Toeplitz matrix whose
minimum eigenvalue is simple, equal to zero, with
associated eigenvector wu=[{u;,...,uy]*. Then, the
roots ZyyeeraZy_y of the polynomial
P(z)=ul+uzz+‘..+uNzN“1 are located on the wunit
circle and A admits the decomposition:

N-|
= Y o DR)ID (V)5 (5)

Xy (£1E, (3)

vhere:
. D(v) is defined in equation (2);
. z,=exp(2inv,) vith =1/2¢v, <1725

. the 's are strictly positive and can be
determined by equating the first column of each
member of equation (5), leading to:

oy z, ceeZy_y a,;
. . - .
Oyt Z *Zn-1 Ay
Since the roots z,,...,2y_;, of the polynomial P(z)

are on the unit circle, they can be determined by
searching for the zeros of the Fourier transform of
the components of u. We now derive the proposed
method in the case of spatially white noise ,from
simple considerations about the CSSM.

o N .
Let .o be the smallest eigenvalue of the estimated

CSM R(f,). This elgenvalue is simple with
probability 1, so that R(f )-61 satisfies the
requirements of Caratheodory’s theorem. Therefore,
R(f,) admits the decomposition:

N-|

A *
R(£,) =Z T.D(v,)D* (v,)+8I. (6)

A=
Following the CSSM idea, our aim is to transform
R(f,) into an hypothetical CSM measured at the
center frequency f,. Since it was shown in [4] that

good focussing matrices are unitary, let us assume
temporarily that there  exist ideal unitary
transformation matrices T(f,,f,) that map any
steering vector at frequency f, to the corresponding
steering vector at frequency foz

For all ©: T(f,,f,)D(f,sin® d/c)=D(f,sinB d/c).(7)

As pointed out before, such transformations cannot
exist, for this would imply for any ©, and 6,:

D*(f,sin8,d/c)D(f, sind,d/c) =
D*(f,sind,d/c)D(f,sin0,d/c) (8)

which 1is easily shown to be false by expanding the
two scalar products. However, if relation (7) was
possible, by setting v=f,sinB d/c and making no
particular assumption about the sensor spacing so
that v may vary over the entire period (-1/2,1/2) of
D(v), we should have:
For all ve(-1/2,1/2): T(f,,f,)D(Vv) = D(vi,/£,). (9)

Then it would follgw from relations (6) and (9) that
the terms T(f,,f,)R(f )T*(f,,f,) of thg\coherently

averaged correlation matrix E:T(fk,fo)R(fk)T*(fk,fo)

Y

in the CSSM would be given by:
A
T(E, , EOR(ENT (£, ,f,) = R, (10)

wvhere:

N-t

R, = ) Dy o/ £ D" (v £q/ £, 451, (11)
=l

Though é; defined by (11) cannot be obtained through
the focussing matrices T(f,,f,), it is however very
easy to get it from the decomposition (6) of R(f,).
Then, proceeding as 1in the CSSM, the DUA can be
obtained by applying the MUSIC scheme-or any other
high resolution method- to the coherently averaged
CSM at the center frequency:

3
R=K! Y R. (12)
The aim of the averaging defined by (12) is to
increase the estimation precision of the CSM at the

reference frequency £;,, as will be checked on
simulations in Section (3).

The steps of the resulting method
below:

are given here

. For each frequency bin f,:

1. Find the parameters P Y "V of the
decomposition (6) of R(% ):
~Compute the smallest elgenvalue % of R(f )
and the associated eigenvector u—[ul,.,uN]
-Find the N-1 zeros v ,...,v.; lying in
(-1/2,1/2) of the Fourier transform
u; +u,exp(2inv)+. . . +uyexp(2in(N-1)v) of the
components of wu. N

-Determine v;,...,vy_; by: N
i | lexp2imv) il exp(2invy_,) |[R,; (£,)
i - . ~ "
Yyo1 | exp(2in(N-1)v;)..exp(2in(N-1)v,_Y|Ry, (f,)
5

2. Compute R, according to equation (11)

. Apply the MUSIC scheme to the coherently
averaged CSM at the center frequency defined
by (12).

Due to numerical errors in the determination of the
V'S, the ?p’s computed here above will fail to be

real. Since they should be positive, we replaced
them with their absolute value in the simulations.

It can be shown that R, tends to the exact.CSM R(f )]
at the center frequency when the estimated CSM R(f )
tends to its exact value R(f,); thus, the averaged
CSM R defined by (12) tends also to R(f,).
Therefore, the estimated DOA, obtained by applying
the MUSIC scheme to R, are asymptotically unbiased.
Another  consequence 1is that the N-P smallest
eigenvalues of R are asymptotically equal, so that
the number of sources could be evaluated for finite
K by looking at the distribution of the eigenvalues
of R. However, testing the equality of the smallest
eigenvalues of R would require a statistical
analysis of R (which is not Wishart distributed)
that has not yet been done.




III- Simulations

In this section, we present some examples which
illustrate the behavior of the proposed method. The
array is linear with N=8 equally spaced sensors, and
a spacing betwveen sensors equal to a half wave
length at the normalized frequency 0.5. The sources
signals and the noise have bandwidth B=0.1 and
central frequency £,=0.45. For this array, the
beamvidth BW 1is then about 16 deg at f;. The
N

estimated CSM’s R(f,) are measured at K=20 frequency
bins in the frequency interval (0.4,0.5), vhich
means that f, varies from f =0.4 to £f,,=0.5 with a
step of 0.1/19. The observation consists in a set of
T K independent zero-mean random complex vectors
X, (fy) defined by (3), distributed according a
complex circular Gaussian distribution, with
covariance E[X, (£, )X "(f,)]1=R(f,). The number T of
observations per frequency bin varies from 50 to
100, depending on the example. The estimated CSM’s
R(f,) are computed from the vectors X, (f,) as
described at the beginning of Section 2.

In the first example, there ‘are P=3 uncorrelated
sources with DOA  -25 deg, -2 deg, 2 deg and
respective SNR’s -10 dB, O dB, O dB. The number T of
observations at each frequency bin is equal to 50.
All methods compared below are applied to the same
data.

Figure 1 gives the response of the Incoherent Vide
Band MUSIC estimator to 10 independent trials. This
method clearly fails to resolve the two sources at
-2 deg and 2 deg. This is due to the poor results
given by the MUSIC estimator at each frequency bin.

Figure 2 shows the results obtained by the CSSH,
using the unitary focussing matrices described in
[4]. Taking for preliminary estimates of the group
angles -25 deg and 0 deg, the unitary focussing are
designed as recommended in [4] by choosing the
following focussing angles: -25 deg-BW/4 = -29 deg,
-25 deg, -25 deg+BW/4 = -21 deg, -BW/4 = -4 deg,
0 deg, BW/4 = 4 deg. The two sources at -2 deg and
2 deg are now well resolved.

Figure 3 displays the results given by our method.
These are comparable to those obtained on figure 2
by the CSSM, without the need of preliminary
estimates of the DOA.

We can check, on this example, the improvement in
the estimation of the CSM’s due to the coherent
averaging. Let us denote by [!.|| the Frobenuis
norm. Then, the average over the frequency bins and
the trials of the relative error of estimation of
the CSM’s ||R(E)-R(E)|[/||R(ED ] is 13.56 .
After coherent averaging at the center frequency, it
is just 3.42 % for our method and 3.65 % for the
CSSHM.

Figure 4 presents the resolving power of the
different wide band methods as a function of the
sources SNR’s. There are P=2 uncorrelated sources
wvith equal powers located at -2 deg and 2 deg, the
number T of observations per frequency bin is 100.
For each value of the SNR, 100 trials were performed
and the two sources were considered as resolved when
the spatial spectrum presented two maxima between
~BW/2=-8 deg and BW/2=8 deg. In the CSSM, we used
diagonal focussing matrices with 0 deg as
preliminary estimate of the DAO, as recommended in
[4] 1in the case of a single group of sources. Also
included as a reference are the results of narrow
band MUSIC with KT=2000 snapshots at the center
frequency 0.45.

Narrow band MUSIC with 2000 snapshots, the CSSM
and our method give about the same results. As
expected, the CSSM and the proposed method have a
much greater resolving power than the Incoherent
Wide Band MUSIC algorithm.

Finally, a Root Mean Square Error (RMSE)
comparison of the estimated DOA’s, based on trials
for which the two sources were resolved, is provided
in table 1. It clearly shows that our method
performs as well as the CSSM.

SNR | Proposed Method |CSSM Narrow band
MUSIC with

2000 snapshots

-6dB [ RMSE=1.08 deg RMSE=1.09 deg|RMSE=0.97 deg
-5dB |RMSE=1.07 deg RMSE=1.06 deg|RMSE=0.99 deg
~4dB |RMSE=0.88 deg RMSE=0.87 deg{RMSE=0.79 deg
-3dB |RMSE=0.71 deg RMSE=0.65 deg|RMSE=0.72 deg
-2dB |RMSE=0.69 deg RMSE=0.64 deg|RMSE=0.62 deg
-1dB |RMSE=0.55 deg RMSE=0.53 deg|RMSE=0.54 deg
0dB |RMSE=0.46 deg RMSE=0.46 deglRMSE=0.44 deg

Table 1: RMSE of estimated DOA’s

IV- Conclusion

Following the same idea as the CSSM, we have shown
that the estimation of the DOA’s of multiple wide
band sources can be handled without the need of
preliminary estimates when the array is linear with
equispaced sensors. The proposed algorithm is an
alternative method to the one presented in {5,8].
Simulations have shown that the performances of the
proposed method are about the same as the CSSM and
narrow-band MUSIC with the same amount of data at
the central frequency. Though the DOA were estimated
in the paper by applying the MUSIC scheme to the
coherently  averaged CSM, they could also be
determined by applying to it any other narrow band
high resolution method.
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Figure 1
Incoherent wideband MUSIC.
8 sensors at A/2 at frequency 0.5 .
3 wide band sources in the frequency band (0.4,0.5) .
Source location and power: -26'(-10 dB) ,~-2(0 dB) .2'(0 dB) .
20 freq y bins, 50 pahota.
Background noise is spatially white with power 0.DB .
m
o
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8 gensors at A/2 at frequency 0.5 .
3 wide band gources in the frequency band (0.4,0.5) .

Source location and power: ~25'(~10 dB) ,-2'(0 dB) .2'(0 dB) .

20 frequency bins. 50 snapshots.
Background noise in spatially white with power 0.DB .
8 focumaing anglesx -29, -25, —21, -4, ~2, 4.
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Figure 3
Proposed method.

8 gensors at A/2 at frequency 0S5 .
3 wide band sources in the frequency band (04,0.5) .
Source location and power: -25(—10 dB) ,—2(0 dB) .2'(0 dB) .
20 frequency bins, 50

{1 noise is spatially white with power ODB .
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Figure 4
Resolving power.

8 gensors at A/2 at frequency 0.5 , 2 gources at -2’ and 2’ ,
100 trials per value of the SNR.
O : Narrow Band MUSIC with 2000 snaphots.
© : Wide Band method with 20 freq. bins in (04,05) and 100 snapshots per bin.
O : C9M with 20 freq. bins in (04.05) and 100 snapshots per bin.
A : Wide Band MUSIC with 20 freq. bins In (0.4.0.5) and 100 gnapshoty per bin.



