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RESUME

On présente ici une étude des différents systémes adaptifs pour
améliorer la qualité de signaux de paroles en utilisant un réseau
de quatre microphones. Parmi les systmes que nous avons
émdiés sont ceux de Griffiths-Jim et Duvall beamformer, la
méthode de Compemolle et le systeme pour la réduction de
bruit sur la parole proposé par Zelinski. On montre en
particulier que la suppression du bruit dépend de la cohérence
spatiale des signaux de bruit regus sur les microphones. On
discute 1a qualité d'amélioration du rapport signal sur bruit

obtenues avec les différents procédés.

1. INTRODUCTION

Speech recognition in man-machine communication systems is
hindered by nonstationary noise from unwanted sources such
as, in a factory, different types of machines. Adaptive noise
reduction systems are often restricted to one or two
microphones. In this paper we analyse and compare various
multichannel systems for noise reduction by means of adaptive
microphone arrays. The results may be applied to the
enhancement of noisy speech in teleconferencing and free-hand
telephoning and to the above mentioned man-machine

communication.

2. ADAPTIVE MULTICHANNEL SIGNAL PROCESSING

Adaptive array processing algorithms are known from seismic,
sonar and radar applications. However when applying them to
speech, additional problems arise which reduce the
performance of the algorithms. Speech and noise interference
are both nonstationary and broadband signals, and often have
similar spectral characteristics. In an office environment

reverberation and echoes often predominate over direct path
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In this paper we present a study of various adaptive systems for
noise reduction of noisy speech using an array of four
microphones. These systems are Griffiths-Jim and Duvall
beamformers, van Compermnolle's method and Zelinski's noise
reduction system. We have shown that noise suppression
depends on the spatial coherence of the noise signals received
at the microphones of the array. We discuss the quality of
Signal-to-Noise Ratio improvement achieved with the different
methods.

signals. To investigate these effects we have used a linear array
of four omnidirectional microphones with different spacing and
a planar two-dimensional array, where the four microphones
are placed at the corners of a square. The signals received by
the four microphones passa beam steering unit with four delays
which are adjusted such that the desired speech signal arrives
simultaneously in the four receivers.

In order to evaluate the SNR improvement of the different
systems speech signal and disturbing noise were recorded
successively. These signals were multiplied by different gain
factors. and added in the computer. Thus it was possible to
determine the noise suppression of various adaptive systems as

a function of frequency and time.

3. PRESENTATION OF THE METHODS STUDIED

The first three methods are based on O. L. Frost's lincarly
constrained adaptive array processing algorithm [1].

The K-dimensional vector of data X[n] observed at the output
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of the steering delays at the n-th data sample is:

x[n] = [x;(n), xp(n), ... x(m)]T 1)
In our case K, the number of microphones, equals four.
This vector is termed the array vector and a KL-dimensional

stacked vector Z[n] containing L delayed array vectors is

formed as
z[n] = [xT(), ..., xT(n-L+1)]. )
The output signal y(n) at the n-th sample is given by the inner

product of the stacked vector z[n] and a KL.-dimensional

weight vector w
y[n] = wT z[n] 3
The linearly consirained minimizaiion problem is defined as
that of finding the weight vector W which satisfies
wir, w @)

subject to CTw 5)

with the covariance matrix
Ry, =E{x(mxT@)}. ©)

The L-dimensional gain vector is defined as
f'—‘ (fo, cesy fL-l ) (7)

and the KL dimensional constraint matrix C

lk Ok s Ok
c- O 1y .. O (8)
O O - 1y

The column vectors 1, and Oy contain K ones and K zeros

respectively. The set of weights which satisfies (4) and (5) is

Wo =R, TC(CTR,TC) ©)
Frost's algorithm is given by
wn+1] =P [w[n] - p y(n] z[n]] + F (10)
where P is a projection operator
P=[l -CTcylcT (11)
and F a quiescent solution vector
F=C(TCy!f (12)

W converges to this value under conditions of spatially
uncorrelated white noise at the steered outputs. p is the
adaptive step size parameter which controls the algorithm
convergency.

The first method studied was Frost's oringinal algorithm as
described above. The second method due to Griffiths and Jim is
an alternative structure which has characteristics similar to
those of Frost's algorithm. It converges to the same optimal
weight vector.

The Duvall beamformer [2] is based on two signal processing
systems, one to perform the adaptation according to Frost and a
slaved beamformer to generate the system output signal. The
Frost adaptive beamformer is connected to the sensors through
a subtractive preprocessor which excludes the look-direction
signal from the beamformer.

The fourth method, proposed by van Compermnolle, avoids the
problem of signal cancellation by switching off the adaptation
in segments which contain speech [7].

The fifth method, suggested by Zelinski, is an open loop noise

suppression system. The output signals x; of the K microphones

are used to estimate the weighting function w[n] of a Wiener
filter . With @ (f) and ®,,(f) the power spectrum of the signal

and the signal and noise, respectively, we obtain the following

transfer function of the Wiener Filter

5 K-2 K-1
KT X 2 Re(X®- X0}
i=0 j=i+1
W( 20 (13)
f)= D, (D = ! K-1 ,
< 2 IX(®)
=0

According to Zelinski the cross spectral component can be

modelled as
(D) X (0 = S0 + Ny(® (14)
S(f) is the autospectral density of the speech signal and Nij(f) is

an additive zero-mean estimation error with uniform
distribution of the phase angle; Nj(f) beeing independent of

S(f). The variances of the real and imaginary parts of Nij(f) are
given as

E{ ReZ{Nij(f)} =E{ Imz{Nij(f)} } (15)
Since the dominator in (13) represents an estimation of an
autospectral density it has to be realvalued with

Im{ X,() X*,(f) } =0 (16)
From (14) we get
Re( X;() X"{(f) } = S(f) + Re{ Ny(H)} a7




Thus the estimation error variance is cut in half, since only the
real parts of Nij(f) are taken into account. The estimation error
decreases with decreasing coherency of the noise received at
the microphones. The estimation error of the cross-spectral
density in the denominator of (13) is further reduced by
applying a frequency dependent reduction factor which is
described in [8].

Taking the discrete Fourier transform W[n] of (13) we get the

output signat as the convolution of the average sensor signal

L K
x(n) = ?2 x;(n) (18)
i=0
with the weighting funcﬁon of the Wiener filter
N
y= ) wi)- x@i) (19)
i=0

4. EXPERIMENTAL RESULTS :

To verify the various adaptive algorithms and to study their
performance several experiments were conducted in an office
room (20 m? area and approximately 1 second reverberation
time) and in an anechoic chamber. White random noise was
emitted from a loudspeaker in the first case and a hair dryer
was used as noise source in the anechoic chamber.

The recorded signals were subject to an endpoint analysis to
determine the start time T and the end time T, of the interval
within which the speech utterance of an isolated word occured.
Fig. 1 shows a typical office recording with 0 dB average input
SNR (1b). Fig. 1a displays the speech signal of one channel
within the interval [T, T.]. Fig. 1c to 1f show the respective
noise reduction as a function of time for various algorithms.
Figures 2 and 3 show the noise reduction as a function of SNR
for different algorithms. In the interval between the start time
T, and end time T, of the speech signal, the noise reduction NR

was calculated according to formula (20).

Te
> ()
t;=Ts
NR = 010g -

Y )

[i=Ts

20)

where e2(t) is the square of the difference between the desired

and filtered signal and n2(t) is the input noise power at discrete
time points t;. Thus we eliminated the influence of the

segments that do not contain speech. Figure 4 shows the noise

coherence l"g(f) between two adjjacent microphones i, j as a

S ) B S S
20 Input SNR y

r « @ & 1
Griffiths-Jim 3.9 dB

.MWMW_
0- A O 0 N N N N S
Compernolle 6.1 dB

20—: dFr
10 -
_MWW.
3g“| O S S B S R S S
Frost 5.8 dB
20 e I
38:1 T T T
1 Duvall 5.2dB
20* f -
10—-"-_\’—'_" NW&Mb
3ng O
0 /A W Zelinski 13.5dB wJIA/V\\/\/\,\,\/\f,v\/v\ i
10 h My gl
] T T -
0_I T 's M T T T T T T T T T e’ T T T I—
Os 05s 1.0s 15s 20s

Fig. 1: Noise Reduction of Different Systems as a Function

of Time in an Office Room.

function of frequency, measured in the office room and Figure

5 gives rilj(t) for the anechoic chamber.

l"izj(f) is defined as

200 ®iOP

0 =250 @0

The noise coherence is very low above 600 Hz in Figure 4 as
compared to Figure 5. Zelinski's noise suppression algorithm is
based on the assumption of incoherent noise [8] .

Our experiments show that this assumption is justified in a
typical office room (Figure 4.) and yields a better noise
reduction (solid line of Figure 2.) than the investigated noise
cancellation algorithms (dashed lines of Figure 2).

Under the artificial condition of coherent noise (Figure 5.) we
see from Figure 3. for input SNR above 10 dB an excellent
performance of the noise cancellation algorithms (dashed
lines), particularly of Compemolle's system. This system
avoids the signal cancellation effect of the Griffiths-Jim beam-
former by switching adaptive filters according to presence and
absence of speech [7].
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Fig. 2: Noise Reduction as a Function of SNR in Office Room
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Fig. 4: Noise Coherence as a Function of Frequency in Office Room

CONCLUSIONS

Several adaptive systems for noise reduction of noisy speech
signals have been tested in a typical office and in an anechoic
chamber. Noise suppression highly depends on the spatial
coherence of the noise signals received at the microphones of
the array.
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Fig. 3: Noise Reduction as a Function of SNR in
Anechoic Chamber
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