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RESUME
Une équation différentielle (ED) qui a le signal x comme

sa solution est la ED de génér‘ation (EDG) de x. Des EDG
dont les coefficients varient plus lentement que x peuvent
servir pour la compression de donédes. On presente deux
EDG de 2e ordre qui sont équivalentes a la repnésmtation
enveloppe—phase de xX. Une EDG de 4e ordre pour un signal
A\ double, appr*opriée pour la compression des phon\emes

3 > 4
vocaligues, est aussi presentee.

1. INTRODUCTION

In our paper we deal with a new approach to data
compression. We consider the signal as deterministic, or a
predictive random process (in the sense of [11), and we
use such structural properties as the relationships
between its derivatives, in order to obtain rew signals,
which are '"data compressed", and at the same time
sufficient for reconstructing the original signal. The key
poinjc here is that the rew signals are more slowly
varying, and therefore, a smaller samling rate is
required.

Let x(t), 0 < t < T, be a three times differentiable
signal. Tre signal can be represented with a given
precision by Nx samples:

N =2B T

X X
where T is the interval during x is represented and Bx is
the conditioned highest frequency of x, i.e. the bandwidth
of x(1). The main idea of our approach consists in repre-
senting the origiral signal by the three new signals
az(t), a1(t), a (1) which constitute the varying coeffi-

0
cients of a second order linear hamogeneous differential
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equation:
ay’x +a; X +agx=0 m
This equation, together with two initial conditions:

x(@) = xg, x(B) = xg

determines x(t) as the unique solution. Therefore, (1)
will be termed the Generating Differential Equation (GDE)
of x(t). Let us assume that the coefficients ak have
bandwidth Bk. Then they can be represented by Nk = 2 Bk T

samples each. If Bk are such that NO + N1 + N < Nx' then

2
data compression is possible. Actually, a stronger
condition is required, which takes into consideration the
quantization of each sample. If Mk' Mx derote the rumber

>

of bits used to represent each sample of the signals ak

X, then the condition for data compression is:

Bo M + By My + By My <B M, 2)

Our aim is to find such a QDE as to satisfy (2) and thus
achieve data compression. later it will be shown that in
some cases it is sufficient to use only two coefficients,

and (2) should be modified accordingly.
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In the past, the idea of using differential equations
for data compression has been mentioned in a control
theory context [2]. However, that paper did rot deal with
specific methods for constructing such equations for given
signals. Therefore, the approach is new, and has not been
treated except in some of our earlier works [31,[41].

A gereral comment is in order here. Traditionally, equ—

ations of the form (1) are written in the following form:

X+ by x+bgx=0 (3)

where the new coefficients have been obtained by dividing
by a2.
and of type (3) - Reduced GDE

the coefficients ak Equations of type (1) are
termed Gereral GDE (GGDE),

these

(RDE). From the mathematical point of view,

equations are equivalent, having the same solutions. But

from the point of view of data compression they are not,
because their respective coefficients differ widely and
essentially in their bandwidths. In the following, we deal

with a special type of GGDE.

2. A 2ND ORDER GDE RELATED TO THE ENVELOPE-PHASE
REPRESENTATION

The following GDE of order 2 was given in [4] :

ap(t) X'+ a(t) X + ag(t) x = 0 4
ap = x X - % X
ap =% x = x 4 (5
s = XX - %X
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where X is the Hilbert transform of signal x(t). This GDE

was derived from the envelope—phase representation:

x = A(t) cos (1) (6)
It is easily seen that for this GDE the following

relationship holds:
a1 = - é2 7

and therefore only the signals ap(t), ag(t) are required
to retain full information about x(i). Moreover, although
a similar simple relationship between a2, aO cannot be
fourd, the latter coefficients are strongly correlated. In
particular, for the case when x is a multiple sinusoid, it
can be shown that az, aa have components at the same
frequency [4]. Therefore, greater data compression can be

achieved if, instead of ao, another signal is retaired:
e(t) = ap(t) - () (€:))]

where ;0 is a scaled version of ag, so as to bring ag in

vallles as a and minimize

the same rage of 5

AVERA(E(eZ(t)):

g =aag + P (9
The encoding procedure therefore includes:
a) computing a2. ao;
b) computing «, B, e(t);
c) decimating and quantizing a2 (), e(t).
The reconstruction procedure includes:
a) interpolating az(t), e(t) to obtain signals at the
original rate which is suitable for x(t);
b) computing ao(t) from az(t), e(t), a, B;
¢) computing a1(t) from a2 according to (7);
d) solving equation (4) with initial conditions x(@),
x(0).

Of course, the process of solving the GDE cannot be
advanced in time indefinitely, because of the accumulating
error involved in the integration process. At given
intervals new values of inital conditions must be supplied
to reset the error.

It has been argued that, due to the sensitivity of the
CDE to errors in the coefficients, their quantization
should be so fine that the large number of bits used per

coefficient sample would anihilate whatever savings have

been achieved by 1lowering the sawmple rate. However,
simulations have shown that this is not the case. An
example of a distortion—rate curve compared to POM is
shoan in Fig. 1. The signal is an amplitude-and-phase
modulated sinusoid, the modulating signals being two
rormally distributed processes of bandwidth 0.05, the
center frequerncy 0.4, the AV B=1, the sampling frequency
1. Fig. 2 shows 200 samples of the original and
reconstructed signals (undistinguishable), and two of the
coefficients. The coefficients were quantized by 10
bits/samples each and decimated by a factor of 4 at the

encoder, and then interpolated by 64 at the receiver end.

3. SCVE LIMITATIONS OF THE ABOVE GDE AND A NEW

GDE TYPE OVERCCMING THEM

We shall analyze here the amount of bandwidth reduction
obtainable by the above GDE and consider ways to improve
it. The coefficients in (85) can be reformulated in arother
way which affords a better insight in the relationship
between them and the envelope and phase representation,
and also allows to estimate the amount of bandwidth

reduction.

LEWR. The coefficients (5) are related to the A(t), B(t)
by:
32 =A2 9
(10)
2g=A B +AME-AD +2A2 D

THEOREM. If the envelope and phase are bandlimitted in Bp,
B@, respectively, then the coefficients 32 a0 are
bandlimitted in 2B+ B_.

imi in A y

The theorem is a consequence of the lemma and of the
theorem on the bandwidth of the product of two
bandlimitted signals. This does not take into account the
additional data compression achieved by using e(t) instead
of a@ ).

The above result shows that better bandwidth reduction can
be achieved by simply transmitting A(1), &(t) and

computing az, a(a by (10) in the decoding stage.
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However, there is another problem as well: the zero—
crossing by az. It has been foud, that in certain cases,
a2 (which is most of the time positive), crosses sometimes
the zero-axis for a brief time interval. This is due, not
to A(t), which is always positive, but to the other factor
in (10)- ¢, and is correlated with large variation rates
of the phase. The zeroing of a2 is destructive for the
process of solving the differential equation, because all
existing methods assume that the leading coefficient of
the equation is nom—zero. It must be emphasized that the
problem is a numerical-technical one, not a question of
the existence of the solution: this exists and is well
behaved, it being the original signal.

In order to overcome the above mentioned problem, we
shall derive a new type of GE and shall proceed as
follows. Any DE solver does rnot solve the 2nd order
equation (4) directly, but the equivalent set of two ist
order equations:

3 %
y=——y——x

az a2
a1

X =y
We seek an equivalent set of equations, in which the
information carrying coefficients are more "symmetrically"
distributed between the two equations and, hopefully, more
simple. We are especially interested in removing from the

denaminator wvanishing functions like az. Such a set of

equations is:
>.(=6A>(—éy
. (y=x) (12)
y= ®dx+8 vy

Here &p denmotes A/A (the dissipant of A according to the
terminology of [41). Note that the denominator of SA does
not contain the phase derivative and therefore there is rno
more a zero—crossing problem.

For this equation, the initial conditions are x(0),

v(@).

4. A 4TH ORDER GDE FOR A DOUBLE AV SIGNAL
In this section we present a special type of 4th order

@k, corresponding to a double AV signal. The motivation

behind this is as follows. In [5] it is shown that speech
can be compressed by modelling the consonants as AV
modulated by noise and vowels by a sum of two AV signals
with constant parameters which are determined empirically
by analysis. In the case of AVl signal we have shown that
it can be alternatively described by a GDE of type [12].
In the double FM case, the previous QDE is also valid, but
is not data compressive if the two carrier frequencies are
widely separated. Therefore for efficient data compression
of this signal family, a 4th order GDE must be derived.

THEORBW. A GDE for the double FV signal:

x = a cos &(t) + b cos 6(t)

is:
X P9 P P X
Yy 9 p P P b4 (13)
z P P P —q z
w P P 9 -P w

whe . : ~ ~

e p=6-29% y=X, w=2z

q=é+é

and z is the output of a transform which discriminates
between the two components of x and Hilbert-transforms

only the high freguency one (cos 8).
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