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Résumé

Jusqu'a présent, les travaux effectués dans le domaine des
réseaux de points ont toujours concerné le canal gaussien. La
constellation optimale est dans ce cas celle qui maximise la densité
des points du réseau, pour une distance euclidienne donnée
minimale entre les points. En dimension 2, la constellation la plus
dense pour le canal gaussien est la constellation hexagonale Az'
Dans cet article, nous nous proposons d'élaborer des
constellations de points adaptées aux canaux 2 évanouissements.
Le point de départ de notre étude est 1a définition d'une nouvelle
distance entre mots de code. Ceci nous permet d'énoncer le
probléme de la constellation optimale dans le canal 2
évanouissements de maniere équivalente au canal gaussien. La
constellation trouvée en dimension 2 a été simulée dans un canal
de Rayleigh, et donne de meilleures performances que la
constellation hexagonale

1. INTRODUCTION

The development of digital communication gives rise to an
extenaing demand for high spectral efficient systems, The TCM
codes proposed by Ungerboeck [1] in the early eighties are an
efficient way of achieving good performances without spectral
efficiency loss. They have been extendly studied for the Gaussian
channel in the last decade. Now, a lot of systems are transmitted
in a fading channel. For the Rayleigh and the Rice channel,
Divsalar and Simon [2] give the design criteria of TCM codes, for
MPSK modulation. It consists on maximizing the Hamming
distance in symbols between the coded transmitted sequences, and
the product Euclidean distance. This is currently applied to QPSK
and 8-PSK modulation formats. But is not easily applicable to
higher efficient modulation schemes, as the 64QAM.

Our idea is to work on the constellation of points, and
search lattice points adapted to the fading channel. Until now, this
field has always concerned the Gaussian channel. In this channel,
the error probability of the usual bi-dimensional modulations M-
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Until now, the study of dense lattice points for
communication systems was only applied to the Gaussian
channel. For this channel, the optimum lattice is the one which
maximizes the density of the lattice points for a given minimum
Euclidean distance between the points. In two dimensions, the
densest lattice for the Gaussian channel is the well known
hexagonal lattice Az. In this paper, we set out to construct a
constellation adapted to fading channels. The starting point of our
study is the definition of a new distance between the signal points,
which we derive from the expression of the error probability. This
is to define the optimum constellation for the fading channel in a
similar way as for the Gaussian channel. We find a new
constellation in two dimensions which give better performance in
the Rayleigh channel than the hexagonal constellation.

PSK and M-QAM decreases exponentionally with the Euclidean
distance between the points. From the energy point of vue, an
optimum distribution of the points is one which maximizes their
density for a given minimum Euclidean distance between the
points. In two dimensions, the densest lattice for the Gaussian
channel is the well known hexagonal lattice A,

The starting point of our study is the definition of a new
distance between the signal points, which we derive from the
expression of the error probability in a Rayleigh fading channel.
This is to define the optimum constellation for the fading channel
in a similar way as for the Gaussian case. This part is developped
in section 2. In section 3, we use this new distance to construct a
lattice in two dimensions adapted to the Rayleigh channel. The
resulting constellation is simulated in section 4, and compared to
an hexagonal and a square constellation.

2. A NEW DISTANCE
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Let x denotes a sequence of N transmitted channcl
symbols (x,,...,x,). Assuming perfect interleaving and a

Rayleigh channel, a Chernoff bound of the pairwise error
probability i.e., the probability of detecting the sequence T in

place of the ransmitted sequence ?, is given by [2]

N 1
P(?——)?) ¢ H ~~~~~~ S S (1)
S, P ikieul?
4N
where 2 is the fading variance, and N /2 is the noisc dsp. Noting
K:{2/4N0, we define a new distance between the transmitted

channel symbols by

N

- -

distp(x,1) = Ln (H 1+ K lixj-l* @)
k i=1

So that the expression of the pairwise error probability (1) can be

written as

N ) -5
P(x—1) ¢e~distp(x,1) 3)

Remark: distp (.,.) is a distance. It is not a norm since it does not
- -
preserve the multiplication by a scalar ( distp (A.x, A. t) #
- —
IMLdistp (x, 1) ). It does not either preserve the rotation  distp
P p P

rot(x), 10t(1) ) # distp (x, 1) ).

3. CONSTRUCTION OF A CONSTELLATION OF POINTS
ADAPTED TO THE RAYLEIGH CHANNEL

Given the above definition, we can now define the
optimum consteliation for the fading channel in a similar way as
for the Gaussian case. An optimum distribution of the points is
one which minimizes the average energy, for a given minimum
distance disip between the points called R i.e, a given maximum

error probability. A constellation in N dimensions can be obtained

.
through the following ilerative algorithm, Let Ol=(0,0,...0) be

- - -
the starting point, and 0,,0,, ..., 0O, the points obtained at step

m. At the next step, find the point 8

1 such that

. = =
distp (0,,0_,)=R
-

-
distp (0,0, ,)=R

- -
distp (0,0, ) =R

41 Minimizes the average cnergy of the set of points

o
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In two dimensions, the resolution of the corresponding equations

leads to a regular constellation i.c, the sct of points forms an
additive group. A basis of this lattice, denoted Rz, is

a-V3p
5 o/2 5 232
v V,= )
a/N2 a+V3B
232

where « and B are two scalars which depend on the ratio K

defined in section 2, and on the minimum given distance R

R/2 _
o= \/ _Z,V(__C_f;), (5.a)

B=\/ 10 +2eR2 4 gVeR_4eR2 44

3K
The generator matrix of this lattice is

between the points

(5.b)

5 O V3B
a/N2 5
M= %)
= o3P
o2 2V2

5
and the points of the lattice consist on all points Mg, with
_} .

€=(£1,€2) a vector of integer components. The fundamental

N
region is formed of six points round 0,=(0,0), and is represented

in Figure 1, next to the densest hexagonal constellation for the
Gaussian channel. It is to notice that the constellation found for
the Rayleigh channel can be obtained from the hexagonal
constellation, expanded according to each axis respectively of o
and B, and rotated by 45°. Stated in another way

1 ,1-1 o0
RZ_?Z(l 1)[0 B]A:" @

4. SIMULATION

The general transmission model is represented in Figure 2.
The input bits are first mapped into a channel symbol (x,y) of R2.

Assuming perfect interleaving of the quadrature components x and
y, and coherent detection at the reception, the received signals z,

and z, are given by
Z,=a,Xx+w,
z,=a,y+w,
where w; (i=1,2) is an additive white Gaussian noise with zero

mean and dsp Ny/2, and a, and a, are two Rayleigh uncorrclated

fading variates with zero mean and variance .
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Figure 2. General transmission model

The signal to noise ratio is given by

E 2,2
r-TEGY) 2(1’;0”) ®

The detection is made following a Gaussian decoding metric,

provided with ideal channel state information (CSI). In other

words, the detector selects the point ( />\( /)\/ ) of R2 which
e . . A2 A2
minimizes the metric 1z, -a, x "+l z, -2,y II".

We simulate the two constellations of M=16 points, shown

in Figure 1, as well as the 16-QAM constellation. The results are

shown in Figure 3. For the conventional squared 16-QAM and
hexagonal 16—A2 constellations, the rate of descent of the symbol

error probability Pg is inversely proportional with the bit energy
signal to noise ratio Ey/Nj . For the new R, constellation, the

slope is of order two i.e, the constellation achieves a second order
diversity. The gain is 4 dB at Pg = 1072, compared to the

hexagonal lattice.

5. FUTURE PROSPECTS

In this paper, we present a two-dimensions regular lattice
which give better performances in the Rayleigh channel than the
conventional squared or hexagonal lattices. This lattice provides a
27 order diversity without encoding. The future prospects will
concern the search of high-dimensional lattice, in order to obtain
high diversity gain.
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Figure 3. Simulation results of the Rayleigh channel adapted consteliation




