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Spectral Estimation with Stochastic Coefficients Models
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Résumé - Cet article présente une application des
modeles autorégressifs a coefficients aléatoires a ’estimation
spectrale des signaux non-stationnaires. Dans ces modéles,
I’évolution temporelle des coefficients est décrite comme la
somme d’uné combinaison linéaire des fonctions du temps
connues & priori et un bruit blanc vectoriel. Deux méthodes

d’estimation basées sur le maximum de vraisemblance sont

présentées et testées sur des signaux synthétiques présentant
des variations spectrales lentes et rapides. Dans ces simula-
tions nous explorons deux interprétations possibles pour la
partie aléatoire du modéle et les confrontons aux modéles
ordinaires sans composantes aléatoires dans les coefficients.

1 Introduction

Discrete-time linear models are maybe the most widely used
models in signals and time-series analysis. Its application is
supported by a well developed theory for the case where
the stochastic process generating the observations (or some
transformation of it) is stationary; however this is not the
case for most applications. A typical way to overcome this
difficult is to perform the analysis over short segments where
stationarity can be assumed or to define some kind of fading
memory around the instant of analysis.

In recent years there has been a steadly growing interest in
models that are non-stationary in their structure. One im-
portant class of such models is that of evolutionary mod-
els, where the time-varying coefficients are described by a
linear combination of known time functions [1]. Another
class of non-stationary models is that of stochastic coeffi-
cient models [2, 3,4]. In these models, the vector of coeffi-
cients is considered as the realization of a stochastic process,
which turns the whole model non-linear. These two classes
can in fact be collapsed into one class called evolution-
ary with stochastic coefficients, studied in [5]. In these
models, the trajectories of the coefficients are described as
a sum of a combination of time functions (as in ordinary
evolutionary models) plus a stochastic process.

In this paper we consider the particular case of autore-
gressif models with stochastic coefficients represented by
the sum of a weighted combination of time functions and
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Abstract - This article presents an application of time-
varying autoregressif models to the spectral estimation of
non-stationary signals. In these models, the trajectories of
the coefficients are represented by the sum of linear com-
bination of known time-functions and a vector white noise.
We present two maximum likelihood methods and test them
with different signals presenting smooth or quick spectral
variations. In these simulations we explore two possible in-
terpretations for the stochastic part of the model and com-
pare the performance of the stochastic approach to compa-
rable ordinary models with no stochastic coefficents .

a vector white noise. The model has been applied to the
spectral estimation of non-stationary signals and compared
with a ordinary evolutionary model (with no stochastic coef-
ficients). We compare their performances in two experiences
with synthetic signals and show that the non-linarity intro-
duced by the stochastic coefficients assumption not only can
improve the description power of ordinary models, but also
indicate structural changings in the process under study.

The article is organized as follows: section 2 describes the
model and how to put it in a state space form, in section
3 we recall two estimation methods [5], based on different
approachs to compute the likelihood function and how to
maximize it. Finally, section 3 describes the experiences
and comment their results.

2 Model Description

Let y; be a univariate processes described by a linear time-
varying model,

Yt = 236; + ve (1)
where v; is a scalar gaussian white noise with variance o?
, & is a vector of dimension & containing past values of
the signal, 2} = [y—1,....,y:—x) and B is a k-dimentional
parameter vector containing the time-varying coefficients of
the model. Its temporal evolution is represented by a equa-
tion with two parts: one deterministc represented by a linear
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combination of known time functions and a stochastic one
represented by a vectoral gaussian white noise, €¢; with an
unkowmn covariance matrix %,

Bt =Bz + € (2

In this equation B is a k X k matrix of weights (to be esti-
mated) and z; is a m-dimensional vector containing known-
time functions.

Z = [Zg(t), ceany Zm_l(t)]’

Using (1) and (2) we can rewrite the model as

vt = 2y Bz + zhes + vy 3)

The right side of this equation shows three terms. The first
one represents an evolutionary model identical to the one
studied in {1] and will be refered as ihe deierminisiic compo-
nent of the model. The remaining terms define a stochastic
error around the first term and will refered as the stochastic
component of the model.

Since y; and ¢; are both random variables, the determina-
tion of the the density of y; is a difficult task. Nevertheless,
we can easily verify that its density is gaussian when condi-
tioned to the vector z;. In fact, y;/z; is a linear transform
of B; which is a multivariate gaussian variable. This is the
key property to the formulation of the estimation method
described in what follows.

3 The Identiﬂcation Problem

The model presents three unknown elements that must be
estimated. The weighting matrix B, which defines the de-
terministic part of the model, and the (co)variances 3 and
o? defining the stochastic part of the model. This is a highly
non-linear problem since the estimation of one component
depends on the knowledge of the other. We examine two
variations of a maxirmum likelihood method based on difer-
ent ways of evaluating the likelihood function defining indi-
retly the way matrix B is estimated. The first one is based
on a input-output formulation of the model and the sec-
ond on a state-space formulation, denomination that will
be extended to the corresponding estimation methods. Both
methods will depend on a non-linear search method to es-
timate the parameters of the stochastic part of the model.
The solution space however is not unrestricted because both
¥ and ¢? must be non-negative by definition. Since the re-
striction ¥ > 0 cannot be explicitily represented, the maxi-
mization will be performed in terms of its Cholesky decom-
position,
L= DD’

where D is a lower triangular matrix. This way, ¥ will
always be non-negative for all matrix D.
3.1 Input-output formulation:

Let us define u; as the stochastic component of the model

(3);

/
U = X361 + Wy

The random variable u; condionned to the knowledge of
z, represents the prediction error at time ¢. It is easy to see
that these prediction errors given by,

N = (ye — 1;th) (4)

form a sequence of independent gaussian random variables
with zero mean and variances given by,

ht = 2} DD'zy + o* (5)

Then, the log-likelihood function can be expressed as,
T
L(B,D,6*)=C = [logh +nih;] (6)
t=1

where C Is a constant.

Maximization of the log-likelihood

The value of the matrix B is readly obtained in terms of the
parameters of the stochastic component and is given by;!

T -l
vee B = Z (2@ 2)(2 ® 71) Z (2t ® T4)ye )

Xz, + o2 Yz + o?

t=1 t=1

The stochastic part can then be obtained by a non-linear
search algorithm. The gradient of (6) with respect to the
non-null elements of D and ¢? is easily obtained even though
one can only assure local optimality, as this is a multimodal
function.

The estimation algorithm consist of two steps: computing
B using equation (7) and then maximizing (6) with respect
to the parameters D and o until convergence is achieved.

3.2 State-space formulation

The model (1) - (2) can be cast in a state space form. We de-
fine the state vector containing the elements that are needed
by the instant ¢ to compute y;. These elements are the ma-
trice B and the vector process ¢;. We define,

o} = [(vec BY, €]

o=[{ $Jers 2]

Despite of its unnatural form, this formulation provides
the proper framework to obtain the estimated values of vec-
tors coefficient 3; that will be used in the second experience
described in section 4. Besides, assuming that the parame-
ters of the stochastic part of the model 02 and £, are known,
a MAP estimate of the B is given for each time instant by
the application of a Kalman filter [6] to the above state space
equations. Also, as is well known (7], the Kalman filter per-
forms an orthogonal decomposition of the signal. Because
we treat here the gaussian case, the inovation sequence 7;,
given by,

Then,

<

m=n—(2®z) beji-1 (8)

l1yec B stands for the vector obtained from B by stacking its
columns of B one on top of the other, in order, from left to right.
A ® B is the Kronecker product of A and B.



forms a sequence of independent gaussian random variable
with zero mean and variance given by,

he =(21®z;) Pi—1(2¢®21) + z:DD'zy + o? Q)]

In the above equations, b;/;1 is the estimated value of vec B
given the observations until time ¢ — 1 and P; is the covari-
ance of the estimation error.

Maximization of the log-likelihood

As in the input-output formulation, the log-likelihood can
be expressed by (6) with h, and 7, replaced by the ones in
equations (8), (9). Please note that in this case, the likeli-
hood is independent of B. Actually, it depends on its esti-
mated value given by the Kalman filter. The maximization
of the log-likelihood needs a non-linear search algorithm de-
pending on the computation of the gradient of (6) in respect
to the parameters. This is done by side recursions obtained
by direct differentiation of the Kalman filter equations. In
practice, we reduce the complexity of the algorithm by using
linearizations to search for the optimal step in the unidierec-
tional search step of the non-linear maximization algorithm.

4 Results and Conclusions

In this section we present simulation results obtained with
two kinds of nonstationary signals. In the first experience,
the signals are generated by an evolutionary autoregressif
system with stochastic coefficients. In this case, the ran-
domness of the coefficients are attributed to variations of the
system produced as the signals are generated. The fidelity
of the estimated trajectories will then concentrate only on
the deterministc part of the model.

Figure 1 (next page) shows a realization of a signal pro-
duced by a evolutionary autoregressif process of order k = 4
and with m = 3 functions extracted from the Fourier base.
In the same figure we show the coefficient trajectories and
the corresponding time-frequency representation. In figure 2
(this page), we show the deterministc part of the trajectories
(in which we are interest) and its time-frequency represen-
tation. Next, in figure 3, we represent the euclidien distance
between the estimated and theorical time-frequence repre-
sentations (TFR) obtained for each iteration of the estima-
tion algorithm, computed over 20 realizations of the signal.
We compare the two estimation methods to the results ob-
tained by least square estimation of a evolutionary model
with same order and base but with no stochastic compo-
nent (X = 0). The clear superiority of the estimations given
by the stochastic coefficients approach shows its advantages
even in the case where only the deterministc component of
the trajectories are of interest.

For the second experience, we generate signals presenting
spectral jumps causing the trajectories of the coefficients to
be step-wise constant. In this case, the stochastic compo-
nent represent the inability of the determinist component
to describe such trajectories with the functions on the base
z. Figure 4 shows a realization of the signal, the coefli-
cients trajectories and its TFR. Figure 5, shows a example

of the trajectories estimated when considering both com-_
ponents of the model. The spectral distances the theorical .

and estimated TFR’s obtained from the 1) determinist tra-
jectories, 2) deterministc+stochastic trajectories and after

3) performing a gliding windowing median-type smoothing
of the estimated time-frequency representation, are sum-
marized in table below. The minimum distance obtained
(3.6dB) by the smoothed TFR givenm by input-output for-
mulation is comparable(3.4dB) to the one obtained by the
short-term least square applied to the same kind of signal
[8], which would be normally the best fitted model to this
kind of non-stationarity.

det. det.+stoch. smoothed
EVOL.(£ =0) 5.2dB - -
INPUT-OUTPUT | 4.4dB 4.1dB 3.6dB
STATE-SPACE | 4.5dB 4.2dB 3.9dB
References

[1] Grenier Y. ”Time-dependent ARMA Modeling of Non-
stationary Signals” IEEE Trans. on ASSP, vol.31, no. 4,
pp-899-911, 1983.

[2] Harvey A.C. ”The Estimation of Time-Varying Param-
eters from Panel Data”. Annales de L’INSEE, no. 30-31,
pp-204-226, 1978.

[3] Nicholls D.F., Quinn B.G. ”Random Coefficient Autore-
gressive Models: An Introduction”. Springer-Verlag, New
York Heidelberg Berlin, 1982.

[4] Dembo A., Zeitouni O. ”Maximum a Posteriori Estima-
tion of Time-Varying ARMA Proc. from Noisy Obs.”. IEEE
Trans. on ASSP, vol.35m no. 4, pp.471-476, 1988.

[5] De Lima-Veiga A., ”Modéles Non-stationaires & Deux
Niveaux”. Doctoral thesis, ENST, France, 1989.

[6] Anderson B.D.O.,Moore J.B. ”Optimal Filtering”. En-
glewood Cliffs, NJ, Prentice-hall, 1979.

(7] Schweppe F.C. ”Evaluation of Likelihood Functions for
Gaussian Signals”. IEEE Trans. Inform. Theory, vol.11,
no.l, pp.61-70, 1964.

[8] Grenier Y., Aboutajdine D., "Comparaison des Repré-
sentations Temps-fréquence de Signaux Présentant des Dis-
continuités Spectrales”. Annales des Télécomunications,
tome 38, no.11-12, pp. 429-442, 1983.

Fig. 2: The deterministic trajectories to be esti-
mated.

RELIET ASSOCEI A LA COMPOSANTE DETERMINISTE
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Fig. 1 : A signal produced by an evolutionary AR
model with random coefficients. Fig. 3: Spectral distance from estimated to real
time-frequence representations.
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