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RESUME

Une méthode plus simple est proposée pour mesurer la densité de
probabilité pdf d’un processus aléatoire. La méthode fait usage de la
analyse du spectre énergétique et d’une théoréme sur la modulation
de fréquence, lequel est presenté avec une rigoureuse formulation. La
consistence de la technique spectralle, aussi que sa suffissance, est
analysée dans cette article. Des resultats pratiques sont presentés
pour permettre la comparaison avec l'approache théorique.

1 Introduction

The time series approach is commonly used to access the estimation
of the probability density function [1). Many methods have been
proposed as useful estimates for the pdf. Typical procedures are the
kernel method, the orthogonal series method, and the interpolation
method [2]. This is usually done by measurement of the time spent
by the signal between two specified levels or through a pulse counting
process, for discrete signals. This leads to biased and inconsistent
estimates, and to mean square errors that depend on the pdf itself
[3]. It is a common practice to assume the stationarity and ergodicity
of the random process into analysis [4].

This paper is concerned with the presentation of a new method
of measuring the probability density function of random signals, and
establishing a new bound on the estimation error, using a theorem on
frequency modulation, correlation techniques and spectral analysis
[5] [6]. The proposed method is based on the spectral analysis of
the random process. The estimation error upper bound is shown to
decrease steadly as the modulating index is increased, which implies
a decrease in frequency or an increase in the power of the signal [7].

Some results are presented , comparing the computacional simu-
lation of the method with the experimental setup. The simulation
performed in FORTRAN, on a workstation [8]. The experimental
setup used a Philips radio as modulator, with 70M H z of interme-
diary frequency, a noise generator and a waveform generator. The
experimental results were obtained from HP 8553B spectrum anal-
yser.

2 Procedure for Estimating the Probability
Density Function

A well known theorem asserts that the spectrum of a high-index fre-
quency modulated waveform can be approximated by the probability
distribution of its instantaneous frequency deviation [6]. The method
developed in this section is proposed to estimate and measure the
first order probability density function (pdf) of random signals which
utilizes the previous theorem. A new proof is presented which in-
cludes the linear mean square estimator, and a new upper bound on

the estimation error based on Papoulis’ inequality [9].

In the proposed model, the modulated signal s(¢) is obtained from
the following equations:

3(t) = Acos(wet + v(t) + ¢) (1)

W(t) = D. /_ ; m(t)dt )
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where the constant parameters A, w, and D represent respectively
the carrier amplitude, frequency (rd/s) and frequency deviation in-
dex. The signal whose pdf one intends to analyse is represented by
m(t), here considered a zero mean random stationary process. The
phase of the carrier ¢ is random, uniformly distributed in the range
(0,27) and statistically independent of m(t).

The following steps are observed in the evaluation of the proba-
bility density function (pdf) of m(t):

1. Compute the autocorrelation function of equation 1.

2. Obtain an estimate of this autocorrelation, for the case of a
high modulation index, using the linear mean square estimator

(o).

3. Compute the power spectrum density (PSD) of s(¢) by appli-
cation of the Wiener-Khintchine theorem on the autocorrela-
tion estimate [10].

The power spectrum density of s(¢) is dernonstrated to approach the
probability density function of m(t) in equation 2, as the modula-
tion index is increased. The difference between the estimate of the
autocorrelation function in step 2, and the actual autocorrelation in
step 1 is the estimation error Eg. An upper bound for this error is
evaluated in the next section and is shown to decrease with the an
increase in the modulation index j.

A high modulating index causes a spectrum broadening of the
modulated signal. In addition, the modulated carrier PSD turns
into the probability density function of the modulating signal. That
is the main result of Woodward’s theorem, and will be discussed
in the following. The autocorrelation function of s(t), defined by
equation 1 is shown below

Rs(7) = B{s(t)s(t + 7)] (3)

Evaluation of the autocorrelation in terms of v(t) leads to

A? ;
Rs(T) — Te]u‘v,'rE[eJ(—u(t)«)—-u(H—-r))]

AT . .
+ Te“”""’E[eJ("(‘)'”(HT))] (4)

The linear mean square estimator was defined in [9] as

Ry() o B

v(t+ 7)™ 0 v(t) — R(0) () (5)

After some algebraic manipulation and simplification, one obtains
the following expression, where 0(.) stands for the remaining terms
of the series

v(t + 1) — v(t) ~ T'(t) + O(r%) (6)
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Use of the linear mean square estimator in equation 4 gives

2

N A . )
Rs(r) = e B0

2

A : ot
n TB_JWCTE[CZ_]TU (t)} (7)

Bat, v'(t) = dv(t)/dt = z , where 2 is the carrier frequency devia-
tion, thus

2
ii_ejw,,rE[ejrz]

RS(T) =

AT .
+ Tefjwc’fE[e*]Tl]. (8)

Recalling the expression for the expectancy,

Ele?™] = /sz(z)ej”dz (9)

where pz{z) is the probability density function of process z = dv(t)/dt
One can therefore evaluate equation & and ohtain

3s(w) = Z-lpa(w + we) + palw - w). (10)

Expression 10 allows estimating the pdf of the modulating signal
derivative.

The definition of z, as stated above, yields

polz) = Som() (11)

where ppr(.) stands for the pdf of m(t).

Substituting equation 11 into equation 10 gives

. A? w + w, w— W,
Ss(w) = o5 lm(=5=) +psr(=5—)). (12)
A Gaussian pdf for m() leads to
1 _.m
pa(m) = ="V (13)

RV 27(PM
with Py = Rpr(0) = power of signal mft).

The equation for a carrier frequency-modulated by a Gaussian
process is given below, which is the very pdf of signal m(t).
2 (wiwe)?

A e 2DTPpr

Ss(w) = 5 (14)

D\/??.’PM

A plot os the Gaussian signal is depicted in Figure 1. The com-
puter output for the pdfis illustrated in Figure 2. From equation 14
the RMS frequency deviation is given by D+/Pp;. As a matter of
comparison, the actual spectrum is shown in figure 3.

For the sinusoidal modulating signal shown in Figure 4

par(m) = — e Im| < V. (15)

That leads to the following PSD

2 1
Ss(w) = e (w £ w,)

=, |w —w| < D.V. (18)

Expression 16 above, whose simulation is shown in Figure 5, is in
good agreement the with experimental results of Figure 6.
3 A new upper bound on the estimation er-
ror

In the preceding section an expression has been derived for the PSD
of a carrier modulated in frequency by a signal m(t). For a high mod-
ulating index it was observed that the PSD approximates the pdf

of the modulating signal. This section is concerned with estimating
the approximation error, in order to validate the procedure.

First, one can show that the mean square estimator used in equa-
tion 7 is efficient, consistent and unbiased. It is sufficient to demon-
strate that

Ry(r) o Ry(7)

E[’U(t + T) - RV(O) U( ) R{’,(O) ‘U’(t)] = 0 (17)
Bt +7) - G0~ PO OF] —0. ()

Expression 17 assures that the expected value of the estimator
equals the mean of the signal. Its trivial to prove this assumption.
The second expression yields a minimum mean square error, and can
be shown to be

€% < (wyr) Ry (0) + % (19)
e? < (wyr)? Ry (0) (20)

The last result indicates that the error for the mean square esti-
mator goes to zero as T — 0, but depends on the square of the signal
bandwidth.

The next step is to show how the approximation behaves as the
modulation index increases. Utilization of a linear mean square es-
timator in equation 4 yields an approximation error given by

Es(B) = Ss(w) - Ss(w) (21)

Considering the limiting case (r = x/Bwp = 1/8fum), an upper
bound on the normalized error can be determined. Substituting the
expressions for Sg(w) and Sg(w) obtained from equations 4 and 7

into equation 21, evaluating the expectancies at w, = Oand using the
following inequality in equation 21 [9]

PEWOF] > (sl +7) - o))
> TRy (22)
leads to 2 i
Bs(9) < (5= - 20(5) (23)
where Q(z) is the Q-function, defined by
Qz) = 2%/ e dz (24)

The above expression is a very tight bound and shows the error
dependency on the modulating index 3. In fact, the spectrum of the
modulating signal is lower and upper bounded by Gaussian curves.
It is interesting to compare a plot of equation 23 with a previous
upper bound on the error, under the same conditions {5].

4 Conclusions

A method for estimating and measuring the probability density func-
tion (pdf) of random signals, with application to communications,
has been derived. The method is based on a new presentation of
a known theorem and has been tested in practice with good results
[11]. A digital computer implementation of the method was per-
formed through contract No. C.NE.085.16 with EMBRATEL.

The efficiency of the estimation used is assured because the vari-
ance goes to zero. The estimation always gets better as 3 goes to
infinity, which implies the consistency of the method. All the rele-
vant information is available for the estimation, giving sufficiency to
the estimator. A new upper bound was introduced on the estimation
of the probability density function through spectral analysis. Some
simulation results were presented to illustrate the procedure, and a
comparisson was made with results from previous work.




On the other hand, the modulated signal bandwidth increases as
the modulation index is increased. This implies in an incressing num-
ber of points needed to represent accurately the pdf of the signal.

The linear increment in the bandwidth is well compensated by the
exponential decrease in the approximation error with the modulation
index. Considering that the number of points used in representing
the spectrum is half the required number of time points, a reduction
in the aproximation error implies an increase in the observed num-
ber of points for the signal. A very fast algorithm can be devised
for estimating the probability density function of signals by using
techniques of FFT in conjunction with the proposed procedure.

As established in this paper, the power spectrum density (PSD)
of the frequency-modulated waveform approximates the pdf of the
modulating signal when the modulating index increases, and reaches
an error smaller than 0.08% for an index of 10. In the experimen-
tal setup use is made of a Philips radio system as modulator, with
T0M Hz of intermediary frequency (IF), a noise generator in the
range of 316k H z to 8,204k H z and a waveform genarator. The fig-
ures presented in the work were obtained from photos taken from
the Hewlett Packard spectrum analyser 8553B.
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Figure 1: Gaussian signal, obtained by simulation
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Figure 2: Probability density function of a Gaussian signal, obtained
by simulation
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Figure 3: Probability density function of a Gaussian signal, obtained
during the experiment
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Figure 4: Sinusoidal signal, obtained by simulation
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Figure 5: Probability density function of a sinusoidal signal, obtained
by simulation
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Figure 6: Probability density function of a sinusoidal signal, obtained
using the spectrum analyser




380

References

(1]

(2]

(3]

(8

9

(10}

(11]

G. Mirsky. Radioelectronic Measurements. Mir Publishers,
Moscow, 1978,

Elias Masry. “Probability Density Estimation from Sampled
Data”. IEEE Transactions on Information Theory, 29(5):696—
709, September 1983.

M. B. Priestley. Spectral Analysis and Time Series. Academic
Press, London, 1981.

M. Schwartz and L. Shaw. Signal Processing: Discrete Spec-
tral Analysis, Detection, and Estimation. McGraw-Hill, Tokyo,
1975.

N. M. Blachman and G. A. McAlpine. “The Spectrum of a High-
Index FM Waveform: Woodward’s Theorem Revisited”. IEFE
Transactions on Communications Technology, 17(2), April 1969.

P. M. Woodward. “The Spectrum of Random Frequency Mod-
ulation”. Memo. 666, Telecommunications Research Establish-
ment, Great Malvern, England, December 1952.

Marcelo S. Alencar. “Measurement of the Probability Den-
sity Function of Communication Signals”. In Proceedings of
the IEEE Instrumentation and Measurement Technology Con-
ference - IMTC’89, Washington, D. C., pages 513-516, 1989.

Marcelo S. Alencar. “Estimation of the Probability Density
Function Through Spectral Analysis”. In IASTED Interna-
tional Symposium on Computers, Electronics, Communication
and Control, pages 271-273, Calgary, Canada, April 1991.

A. Papoulis. Probability, Random Variables and Stochastic Pro-
cesses. McGraw-Hill, Tokyo, 1981.

B. Levine. Fondements Théoriques de la Radiotechnique Statis-
tigue. Editions de Moscou, Moscow, U.S.S.R, 1973.

Marcelo S. Alencar. “Estimagido da Densidade Espectral de
Poténcia do Sisterna FDM-FM da EMBRATEL”. In Anais
do Simpésio Brasileiro de Telecomunicagées, Campina Grande,
Brasil, pages 297-300, 1988.



