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RESUME

Dans [3], on a presenté la nouvelle méthode de
déconvolution aveugle, basée sur le modele d’un type
de vibration de propagation d’ondes. La méthode a
été projetée pour la déconvolution de signaux
seismiques, enregistrés dans les mines. Elle se
consiste de deux pas fondamentals: d’un - P’estimation
de la reéponse impulsionelle du syst®me et d’autre - la
filtration inverse unie avec optimilisation.

Dans I’article presenté on a introdui la méthode
d’estimation de la réponse impulsionelle et la nouvelle
définition de la fonction de cofit basée sur I’autocore-
lation du quatrigme ordre. L’instrument fondamental
de la méthode c’est la projection ortogonale. On a
presenté aussi les résultats de déconvolution.

1. Introduction

In many cases e.g. processing of seismic signals
produced by shocks in mines, neither an excitation
x (#) nor a system impulse response % (f) are known but
merely a system output y (f). Being interested in x (f)
and h(t) we are faced with a problem of blind
deconvolution. The deconvolution method, partially
presented in [2,3], is designed for seismic signals
gathered in the copper mines for which predictive and
homomorphic deconvolution methods have failed. It
has turned out that signals observed in the copper
mines differ essentially from those occurring in
seismic exploration, because of differences in
environment of seismic waves propagation.

Some assumptions presented below are connected
with application of the method. These assumptions
allow to design the deconvolution method but also
restrict its applicability to a specified class of the
signals. Likewise it is a wide class of signals occurring
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in evaluation of mechanical objects. This class is
specified as follows :

1. the input is a short-term impulse,
2. the system is constituted of parallel connection of
elementary systems, i.e.

N
h@) = ¥ h( n
n=1

3. the elementary systems (ES) are of vibrating type.

The first step of the blind deconvolution method
is estimation of the system impulse response (IR). The
second one is the inverse filtering implementing the
estimator of the system IR combined with an
optimization.

In this paper, mainly the method of estimation of
system impulse response as well as the problem of the
cost function definition have been presented.
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2. The concept of system impulse response
estimation

For the short-term impulse input and for the ESs
of vibrating type, the system output can be expressed
as [2]

N
y(t) = E axhn(t ""tx) 2
n=1

where a, and ¢, are constants. Equation (2) has a form
of approximating sequence
L

y) = 121 oyw; () 3)
where the set of coefficient {oy: /=1,...,L} denotes a
representation of the y(f) in a basis {w ()
I=1,...,L}.

Similarity of (2) and (3) yields the idea of the
system impulse response estimation. Choosing the
base {w;()} corresponding to impulse responses of
ESs it is possible to determine some estimator of IR of
the whole system. Since, in practice, the signals are
discrete, of finite-energy and of duration T, the
problem is actually considered in a unitary space RT
being a subspace of /,.

Let O be an infinite set of functions {v,(¢)} with
norm //v;//=1 including all possible (according to the
model) IRs of ESs. If the discrete signal y () duration
equals 7, then the number of linearly-independent
elements which can constitute a basis of the space R7,
whose members will be all signals of that duration, is
also equal to 7. Thus, the set © will also contain
linearly-dependent elements and therefore it can not
‘directly constitute a basis of the mentioned space.
Hence, an algorithm which allows setting basis {w;} is
required. There are many bases of R”. Having in mind
that the basis elements represent IRs of ESs, a
condition is that they should assure the fastest
convergence of the sequence (3). In this sense the basis
should be "matched" to the given signal.

Having stated the problem in this way, there
exists a problem of selection of elements from an
initially assigned set of functions. The problem can be
solved if a criterion of the selection is specified. In this
work the mean-square error has been chosen.
Consequently, only such elements of © will be
selected (as the basis elements), which : a) are
linearly-independent, b) assure the least mean-square
error,

We notice that the number of elements of © used
in the approximation is closely related to the
assumption that the number N of parallely connected
elementary systems is smaller then the signal length 7.
For N>T the proposed method of estimation of
system impulse response is useless. In practice, the
task can be effectively solved if N<<T.

3. Design of the optimum basis

The orthogonal projection is a fundamental tool
for choosing of the basis elements from the set ©. Let
S, denote the subspace spanned by {wi,...,w,}, i.e.
S, = span{wy, ...,w,}. Let P(S,)y denote the
orthogonal projection of a vector y on the space §,, and
P(S.)y - the orthogonal projection of y on the
orthogonal complement of S, relative to RT
RT = S,®SL). Let P(v)y denote the orthogonal
projection of a vector y on span{v}.

In this method, the choice of the subsequent basis
elements is made in a recursive manner. Let us assume
that n —th step solution is given, i.e. {w,...,w,} and
P(S3)y are known. The task is an optimum selection of
an element from O, which will be the (n + 1) —th basis
element. This element must be linearly-independent
with respect to the elements {wq,...,w,}, what is
satisfied if

P W, +1)P St/ > 0 @

To show (4), observe that P(Si)y belongs to the
orthogonal complement S%. If the vector w,;, were
expressed as a linear combination of the vectors
{wi,...,w,}, then it would belong to the space S,.
Then, the projection of the P(S4)y on the w, +; would
be a vector with norm equal to zero. Consequently,
none of the elements of S} (and in particular - w, 41)
can be expressed as a linear combination of vectors
{Wi,eoe,Wa}.

Besides, w, ,; must be such an element of O,
which assures the least approximation error of the
vector P(S})y, what is satisfied if

P (W, + )P SHyll > IPOPSHy!l ()

where v is any element of the set © not equal to W, 4.
In an unitary space, the projection norm of the vector
P(SL)y on span{v}, where v is a normalized vector, is
given by the inner product.

The set {wy,...,wy} can constitute a basis of the
subspace of R” and this is actually the required set
mentioned in Sec. 2. Let us observe that due to



established form of the elements of O, the basis is
nonorthogonal.

4. Models and possible modifications
of the estimation method

There are possible various models of IR of ES
and therefore various elements sets ©. The model
depends on an object for which the proposed method
will be used. In our investigations, the elementary
vibrating type systems for which the envelope of IRs
can be described by Pearson’s curve [1] has been
considered. Hence, the set of functions decribing the
IRs of ESs constituting the sequence ,,h,(f) can be
expressed as

mhn(t) = Bn 1(’ —tn) (t —tn)m 8—7"(‘ ) X

X sinQxf,(t —t,)) (6)
where 3, is a multiplier, 1(¢) denotes Heaviside step,
t, is a time delay, v, decribes vibration dumping and
J» is a vibration frequency. For the given model with
m fixed, the IR of ES is determined if the parameters
Jnstns¥n and B, are known. The presented in Sec. 3
method allows for estimation of the parameters
{fasYnstn,Ba:n=1,...,N} and in consequence - the
estimator of IR of the whole system.

The system IR of type (6) can be described by
means of several parameters. Though orthogonal
projection is a fundamental tool of the estimation,
because of computational efficiency, the use of some
supporting procedures is useful. Effectiveness of these
procedures depends on such signal parameters like e.g.
signal length and the number of parallely connected
ESs. The frequencies {f,} of vibrations can be
estimated more effectively by means of one of many
spectral analysis algorithms as well as the time delays
{t.} - by means of one of time delay estimation
algorithms [4].

5. Optimization and cost function definition

In the presented method of deconvolution merely
the estimator A(r) is known. A(¢) is the form of h(s),
besides that the exact value of parameters of the
system IR are unknown but merely their estimators.
Consequently, the inverse filtering results in the
estimator of the input, i.e.

2() =X@) =y  ~hE) 0

A
where s denotes convolution and ~'h(¢) is an inverse

filter.

In {2] it has been shown that the errors of
determination of {8,} and {,} result in some
additional terms in the output of the inverse filter.
Those terms are actually the echoes of the input with
various amplitudes and delays.

In order to minimize the estimation errors of the
parameters, one can employ an optimization process
[2,3]. It needs determination of a cost function. The
cost function is defined on the base of the inverse filter
output. It is comprehensible, that the optimization
result is sensitive to the cost function definition. We
have examined several ways of determinig the cost
function [2..4], among which those based on the
power cepstrum and the second order autocorrelation
allows one to obtain quite satisfactory results.
Unfortunately, in some situations the optimization
with the cost function defined in this way has failed.
One of the reason is that second order characteristics
do not contain information about the signal phase and
that the signals and the system IR are nonminimum
phase. To remove this inconvenience the cost function
definition based on the fourth order autocorrelation has
been introduced. The cost function M3, has been
defined as

PP R20,71,72)

My =Y X

— ®
nepr=p R2(0,0,0)
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Fig.1. Exemplary input and output test-signals
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where p and P describe this fragment of the autocorrelation and corresponding autocorrelation.
autocorrelation function which serves for calculation
of the cost function value. LOF |
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