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RESUME

La méthode de propriétés de structure est appliqude &
un exemple consistant de la mesure de la fréquence

- . . 7
d'un signal sinc bruite.

1. INTRODUCTION

Estimation of parameters (frequency, amplitude,
phase) of multiple sinusoids imbedded in noise is a
subject abundantly treated in signal processing
literature, and a large number of methods and variants
of methods have been suggested. On the other hand,
little work, if any, has been done to deal with
non-sinusoidal signals (see in this context [1],[2]).
Clearly, the interest in multiple sinusoids is due to
the ubiquitous presence of this kind of signals in
physical systems, but one may wonder if, at least part
of the reason for this interest lies in the fact that
one knows how to deal with sinusoids, but not with
other signals. Indeed, processing multiple sinusoids
is equivalent to processing a linear, constant-
coefficients differential equation, which is simply
related to a linear, constant-coefficients difference
equation, and this kind of equation is easy to deal
with.,

The structural properties approach [3] affords
tackling the problem of parameter estimation in the
case of arbitrary signals by using the relationships
derivatives. These

between the signal and its

relationships express themselves as a Generating

Differential Equation (GDE) for the signal under
discussion, i.e. a differential equation which has the
signal as a solution. These GDEs are time-dependent,
or non-linear, or both, and their corresponding
difference equations are not readily derived, as in
the case of multiple sinusoids.

In this paper we investigate, as a test case, the
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frequency estimation of a sinc signal imbedded in a

normally distributed white noise:

sin w(t - T/2)

x(t) = + n(t), Osts<T (1)

w(t - T/2)

where w = 2nf, and f is defined as the frequency.

We investigate by computer simulation the rms error
and the bias of the error, and how they are affected
by the sampling rate and the signal-to-noise ratio
(SNR). These algorithms are highly dependent upon the
differentiation method used. Two of them are compared
here: an interpolating polynomial formula and an FFT

based method.
2. A TIME INDEPENDENT GDE FOR THE SINC FUNCTION

A linear, but time-dependent, GDE for the sinc
function is [3, p.164]:

tR%+ 2% + wotx = O. (2)
This GDE can already form the basis for a frequency
estimator, but it is desirable to derive a new GDE
which is time independent, in order not to be bothered
by synchronization problems. By differentiating (1)
and substituting t between them, we obtain the GDE:

2.2

wx_ o+ 2w (2xX - *2)

© 3 - 2K =0 (3)
which is time independent, but non-linear. (Clearly,
there is a trade-off between 1linearity and time

independence). Note that this GDE is invariant to time
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delay or phase in the signal.
This GDE can be used for computing the frequency in
the case there is no noise. The procedure consists of

computing the first 3 derivatives and solving a
quadratic algebraic equation in w. We derive next an
algorithm for estimating the frequency in the presence

of noise.

3. ALGORITHM FOR ESTIMATING THE FREQUENCY IN THE
PRESENCE OF NOISE

If the signal is contaminated by noise, the GDE in

(3),

Zero,

viewed as an operator on x, does not produces

but there is an error:

GDE(x,%,%,%) = e "

We shall minimize

(3).

this error in a mean square sense during the time

where GDE denotes the GDE of

interval in which the signal is available. Squaring
the equation 4y, averaging over time, and
differentiating with respect to w2 produces the
following algebraic equation:
au3 + bu2 +cu+d=0 (5a)

where u denotes w2. and:

a=< x4 >

2 - .2

b =3 < x(2xX - %) > (5b)

¢ = < 1152 v 2% - 2xPkk - BxiR >

d = < (3% - 2&%) (2x% - %°) >

and < > denotes time averaging on interval T. Note
that this equation can be solved analytically.
for frequency is

The algorithm estimating the

therefore as follows. Given  samples of the
contaminated signal (1) during the interval T:

1. Compute the first 3 derivatives by any method {(on
differentiation methods see next section).

2. Compute the coefficients (5b).

3. Solve the cubic equation (5a) in unknown u. It has
been shown empirically that the valid solution is
always given by the first of the three solution
formulas (first in the sense of [4]), both in the case
D<O and D > O.

\[w/ 2n.

4. Compute the frequency =
4. DIFFERENTIATION METHODS USED

In our simulation we have used 2 differentiation

methods. The first one is based upon a Lagrange

polynomial of degree 6, interpolating 7 adjacent

samples of the signal. According to this method the

derivative at time t[n] is estimated by:

- 45(Xn+1— Rooq) 79y X o) XXy

Xn
. 60

Given NP samples during T, this method always computes
the derivative at NP -6 points, each time operator (6)
is used. In our case, 3 derivatives are required,
therefore we must discard at the edges of the time
interval 36 = 18 samples, which are not available for
subsequent computation (averaging, etc.). This also
sets a minimum for the number of samples required by
this method: NP = 19, If averaging is required, for
example for low SNR, then NP must be larger.

The second method is based on FFT. The FFT is
obtaining X[k], k=

the

performed on the data sequence,
0..NP/2. The
frequency domain by

SWIKIX[KD, ~w2[kIX[k],

differentiation is performed in

computing the new sequences:

-jw3[k}X[k}, where wlk] =2nk/T,
and transforming back to the time domain by IFFT. Note
that only 2 FFT transformations are required. In this

method NP must be a power of 2.
5. SIMULATIONS AND RESULTS

In the simulations, the following parameters and
notations have been used. Without loss of generality,
the frequency was normalized to f = 1, and therefore
the unit of time 1/f was also normalized (1/f is the
width of the main lobe of sinc).

T is the time interval, T=6 in all simulations.

NP is the number of samples during T.

N is the sampling rate, N=NP/T.

When the polynomial differentiation method was used,
subsequent computations were made upon NP - 18 samples

(discarding 9 samples at each edge).

When the FFT method was used, NP was 16 or 32, and all
samples were used.

A normalized error was defined as:
(but f=1)

e = (computed frequency - 1)/f

Its bias is:

bias = ( Ze[j]l ) / I
where J is the number of experiments using different
noise sequences, and summation is over j=1..J.

The normalized rms error is:

2
X e J
p /

rmse = \

The number of J=400
polynomial method, J=120 for the FFT-based method.

experiments was: for the

In a first set of simulations, we have investigated
the influence of the sampling rate N on the estimation
error, at high SNR (40 dB) and low SNR (-5 dB), for

both differentiation methods.




The results for the error bias is shown in Fig. 1,
and for the rms error, in Fig.2 (logarithmic scale).
For high SNR, the bias is very small (less than 0.01)
for both methods,
N>5. Also, the bias of the FFT method is smaller {this

but the polynomial method requires

minimal error obtainable by both methods is roughly
the same: 15%.

In the second set of simulations, we have
investigated the influence of the SNR on the error, at

fixed sampling rate. The sampling rate was chosen to

oVUO

be optimal for each method: N=5 (NP=30) for the
polynomial method, N=2.66 (NP=16) for the FFT method.

The results are seen in Fig. 3 (bias) and Fig. 4 (rms

is not apparent in the graph). At low SNR the bias is
highly dependent on N. Small bias can be achieved only
for special rates: in the vicinity of N=5 (polynomial
method) or N=2.66 (FFT method).

Rms error: for high SNR it follows the behavior of
For low SNR,

error). Both graphs exhibit similar behavior for

the two methods. The bias is less than 10% always; for

high SNR ( > 20 dB) it is less than 1%. The FFT method
exhibits a better performance at almost all SNR,

the bias. the minimum error is attained

at the same rates as the minimum bias. Moreover, the

except at very low ( -5 to 0 @B ).
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6. CONCLUSION

It has been shown that the method of structural
properties can be used to estimate parameters of

arbitrary signals imbedded in noise. Using high

derivatives ( up to 3rd derivative in this special
case), even in presence of noise, is not an impediment
for the method. It should be emphasized, that no
special smoothing has been performed before or after
differentiation, except for the averaging inherent in
the algorithm (which arises from minimizing the mse).
The test case has shown that short records of data (16
- 48 samples, a time window of 6 lobe widths of sinc)
rms error of

The FFT

are sufficient for acceptable results:
15% is obtainable even at low SNR ( -5 dB ).
method requires smaller sampling rates in general and
at high SNR

performs better {less dependence on N)

(>10 dB). The method can be improved by using other

differentiation algorithms, and also can be applied to

other signals as well.
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