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RESUME

La théorie concernant les processus Auto-Regressifs
peut étre divisée en trois niveaux d’approximation. Un
traitement des différents critéres pour la sélection
d’un ordre est basé sur cette classification, qui est
supportée par des résultats de simulations. Les
critéres mesurent 1’exactitude 4'un modéle, point de
vue de prédiction, au moyen d’une transformation des
résidus. La base théorétique rends possible d’arriver
4 une amélioration des critéres existents, comme 1'AIC
et ses variantes.

INTRODUCTION

Autoregressive processes are known in many fields
of application like speech analysis, spectroscopy and
geophysics. When an AR model is fitted to a time
series the parameters have to be estimated and an
order has to be selected. The parameters are mostly
estimated using one of the estimation methods like
Yule-Walker, the method of Burg, the least squares
method with forward residuals only (LSF) or the least
squares method with forward and backward residuals
(LSFB); see Kay and Marple (1981). The order has to be
selected by means of an order selection criterion.
With each additional parameter above the optimal AR
order the residual sum of squares decreases. The sum
of squared prediction errors increases at the same
time with an equal amount. This is a measure for the
accuracy of applying an estimated model to new data.
It 1is the basis for the Final Prediction Error (FPE)
of Akaike (1970).

Three levels of approximation to AR estimation will

be distinguished: probability limits, asymptotic
theory and finite sample theory. The classical
theoretical framework is provided by the probability

limits of Mann and Wald (1943). In the probability
limit the estimates will assume their statistical
expectation. Terms of magnitude-order 1/N are

neglected, where N is the number of observations.

Accuracy of order 1/N is necessary for order
selection, because the essential differences between
competing models are of O(1/N). Therefore Akaike

(1970,1974) developed his theory. The AIC was
introduced in 1974 as an improvement to the previous
FPE. Also consistent variants of the AIC were
presented, like the criterion of Rissanen (1978) or
the criterion of Hannan and Quinn (1979). The
theoretical derivations contain some heuristic
arguments and were critisized by Bhansali (1986).
Lately it has been shown by Broersen and Wensink
(1991b) that all results can easily be derived by
considering AR estimators as non-linear functions of
estimated covariances. A second order Taylor expansion

can be wused to approximate their expectation with
accuracy 1/N.

Broersen (1985, 1990) showed in simulation
experiments that the residual wvariance and the
prediction error depend on the method of parameter

estimation in finite samples. Finite sample parameter
variances were developed to describe the behaviour of
each estimation method. The lack of theoretical
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In autoregressive theory three levels of approximation
can be distinguished: plim, asymptotic and finite
sample theory. Starting from this classification the
different criteria for order selection are considered.
The sum of squared prediction errors is a measure for
the accuracy of an estimated model. The prediction
error is estimated by means of a transformation of the

minimized residual variance. The theoretical
background provides a possibility for improving the
performance of existing criteria 1like AIC and its

consistent variants. Both asymptotic and finite sample
theory are supported by simulation results which at
the same time indicate the distinction between these
levels of approximation.

background of the finite sample results may be aun
obstacle in their acceptance. Therefore, the FSC is
presented as a physically based order selection
criterion, being the best possible estimate of the
prediction error from the available data. The
criterion wvalue itself is an estimate for the
prediction error of the selected model. As a natural
result evolves from these considerations the Finite
Sample Theory. FSC converges to FPE if the sample size
increases. The General Information Criterion GIC
describes all existing order selection criteria that
use the logarithm of the residual variance. A finite
sample improvement for this criterion is given with
the Finite sample Information Criterion (FIC).

The three levels of approximation in the theory are
enlightened by an overview in a Table and by some
figures.

AUTOREGRESSIVE THEORY
An AR(K) process is given by:

X+ a,x b S - €
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where ¢ 1is the generating innovation proces, i.1i.4d.
with zero mean and variance af, which is taken to be 1
in our simulations.

The residual variance Sz(p) is the fit of a model

to the data and 1is minimized to estimate the
parametexs:
N
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The parameter api is the i-th estimated parameter in a

model of order p.

The prediction error PE(p) is the measure for the
model fit to an independent realisation y(n) of the
same stochastic proces x(n). It is given by:

2
Y.

PE(p) = (yn + a lyn-l + ... + app n-p)

P

Three levels of approximation to
estimation are distinghuised in Table 1.
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‘innovations become the same.

Table 1.

Three levels of approximation of AR theory

Probabjlity limits

Asymptotic theory

Finite Sample Theory

0(1/N)

Mann and Wald (1943)

Akaike (1970, 1974)
Bhansali (1986)
Broersen/Wensink (1991b)

2 2 2 2 P
plin (o) = o] . p 2K B(S* () =00 (L-p/M) , p=K | E(S2(p)) = o> T (1 - v(i,.))
o0 i=0
p =K
. 2 2 2 P
plim PE(p) = o p>K EPE(p)} =0, (1 +p/N) , p2K E(PE(p)} - ¢ T {1 + w(i,.))
Noeo ¢ i=0
N +0p P 1+ v(i,.
No oxrder selection FPE(p) = Sz(p) FSC(p) = 52(p) I E—————-“——zl
N -p i=0 (1 - v(i,.))
2 2 P
GIC(p,a) = In{S"(p)} + a p/N FIC(p,e) = In{(S7(p)) + a« I v(i,.)

v(i,.)
Broersen (1985, 1990)

, ete. Broersen and Wensink (1991a)

i=0

@ Probability limits of Mann and Wald (1943), using :

plim x, =

g = aor lim Prob(|xy- a] = ¢) =1 for ¢ > 0.
N-o

Now

Thus they prove that autoregression can be dealt with
as if it were a classical linear regression problem.
The same observations are treated as dependent and as
independent variables. In the limit for N-w all
estimates will assume their statistical expectations.
Parameter estimates become equal to the true parameter
values; the bias of order 1/N disappears. Therefore,
the probability density functions of predictions and
No difference can be made

between prediction error and residual variance. The
theoretical Yule-Walker equations describe the exact
relations between the true parameters and the

expectations of the data covariances at this level.

© Asymptotic theory. Small differences between models
of increasing order determine which order is the best
to select. It is important to make a clear distinction

between PE(p) and Sz(p). Akaike (1970) showed the
differences to be of O(1/N). His original derivation
contains heuristic arguments. However it is not
uncommon, that an essential correct result is obtained
by dubious derivations. Broersen and Wensink (1991b)
showed, that the expectations of all interesting
quantities can be derived in a  straight-forward
manner. Parameters, vresidual variance and prediction
error are written as non-linear transformations of
measured covariances:

N-p
z
n=

R(®) = §5

X X
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All desired transformations are found by means of the
theoretical Yule-Walker relations, substituting the

estimated R(p) instead of 1its expectation R(p). A
Taylor expansion of those functions will give the

desired expectations. They are a function of the
A

variances and covariances of the measured R(p), for
which the asymptotic expressions of Bartlett can be
used; see Priestley (1981, p326).

The residual variance and the prediction error are

given in Table 1. Also the bias in the parameters can
be computed in this way. Starting from the Yule-Walker
equations the parameters can be calculated:

~

~
Ra=-r.

A first order model gives a;, = - p(1) = - R(1)/R(0).

Bias is caused by the expectation of the quotient not
being equal to the quotient of the expectations. Using
the second order Taylor expansion the bias can be
computed :

E(al) - al(l-Z/N).

This result can easily be extented to higher order
models. A second contribution to the bias is present
if the estimated mean of the time series is

subtracted; see Broersen and Wensink (1991b). A third
form of bias arises in the Yule-Walker method of
parameter estimation, because the estimates of

covariances used are divided by N instead of N-i.

© Finite Sample Theory. This provides a theoretical
framework for results of simulations. The effect of
the estimation method becomes important. The treatment
of the first and sometimes the last p data points
causes considerable differences between the outcomes
of the estimation methods. To discriminate Dbetween
those different kinds of behaviour the finite sample
variances v(i,.) were introduced. They are the basic

elements of the Finite Sample Theory. It is shown in
the asymptotical theory and in finite sample
simulations that the variance of the last estimated
parameter p, for p greater than the true proces order
K, 1is independent of the process. The v(i,.) are
calculated from a white noise process, so that all

estimated parameters are above the true process order.
The results are presented for four estimation methods
in Fig.l. The points represent the simulation results,
the drawn lines are the emperical approximations:

v(i,YW) = (N-i)/(N(N+2))
v(i,Burg) = 1/(N+1-1)
v(i,LSFB) = 1/(N+1.5-1.51)
v(i,LSF) = 1/(N+2-2i)
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Fig.1 Variance of AR estimates from 20
white noise observations

For all methods v(0,.) = 0. It is easily seen that the
asymptotical value for the variance of 1/N appears to
be only a fair approximation if the model oxder i is
small in comparison with the number of observations

PREDICTION ERROR

The prediction error PE is a measure for the fit of
the model to future data. Its value indicates the
accuracy of an estimated model. It can be computed in
simulations, but in practice it is unknown and must be
estimated. In order selection the model with the
lowest estimate for PE is in general selected. These
models give best descriptions of the data, even if the
selected order differs from the order of the process
that generated the data. Broersen (1989) illustrated
this when he found AR(3) models to be most accurate in
describing finite sample sequences from an AR(8)
process; the best order depends on the sample size.
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Fig.2 PE for different estimates
from 20 AR(2) observations

Akaike (1970) introduced the Final Prediction Error
(FPE) to get an estimate for the PE (see Table 1). It
is based on the fact that each extra parameter above

the best model order gives a decrease for Sz(p) and an
equally valued increase for PE(p).

Fig. 2 presents the average value of PE(p) in 10000
simulation runs for four estimation methods, as a
function of the model order p. In finite samples the
actual behaviour of PE is apparently dependent on the
method of parameter estimation. It has been proved by
induction that:

P
E{PE(p)} = az n {1++v({,.)}, p=z=K.
€
i=0
Likewise the reduction of the residual variance above
the best model order is independent of the data:
2 2 2
E(S"(p)} = E[ {S"(p-1)}(1 - a_ 1} ]
PP
2 p
=¢° O {1-v(i,.)}),p=K
€ .
i=0
To transform the residual variance of an individual

realisation inte an estimate of the PE the Finite
Sample Criterion (FSC) is suggested. It uses the same
approach as FPE, being based on the quotient of

expectations of PE(p) and Sz(p):

P
FSC(p) = §(p) T ((1+v(i,.))/(1-v(i,.)))

i=0

In Fig.3 the average PE(p) in simulations is
compared with its asymptotic estimate FPE(p) and its
Finite Sample estimate FSC(p). FPE(p) has a maximum at
about order 7 and gets a second minimum at higher
orders. FSC(p) appears to be a better approximation.
It folllows the curve of PE fairly well up to order
10. Higher order models are not estimated from 20
observations. FSC(p) converges to FPE(p) for large
sample sizes with N >> p.

GENERALIZED INFORMATION CRITERION

AIC and 1its consistent variants can together be
described as a Generalized Information Criterion:
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Fig.3 PE, FPE and FSC for LSFB
estimates from 20 AR(2) observations
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Fig.4 GIC for LSFB estimates
from 20 AR(2) observations
2
GIC(p,a) = 1In{S"(p)) + a p/N

This is AIC for a=2, the criterion of Hannan and Quinn
1979) for a=2In{ln(N)} and the criterion of Schwarz

and Rissanen (1978) for a=In(N). One of the
undesirable properties of the order selection
criteria, described by GIC, is their second minimum.

The deep high order minimum explains why methods may
give poor results. In Fig 4. the curves are shown for
LSFB estimates. The same shape is found for LSF and
Burg estimates. Only for Yule-Walker no second order
minimum is found. The simulation results of Fig.4 are
accurately described by substituting the Finite Sample

approximation for E(Sz(p)) in GIC. This locates the
maximum at v(i,.) = e/N, which will never occur for
Yule-Walker (if a > 1), because v(i,YW) < 1/N.; see
Broersen and Wensink (1991a).

The residual variance, expressed as a function of
measured covariances, 1is a stochastic variable. In
model order selection criteria described by GIC the
logarithm of the residual variance is taken. So a non-
linear operation on a stochastic variable 1is carried
out. The Taylor expansion gives the expectation of the
logarithm of the residual variance:

2
E(1n(s%(p)1] = In(E[s®(p)]) - Yor(S (@)

282152 (p))

In many theoretical derivations, the last term is
omitted; see Bhansali (1986). The expectation and the
logarithm are interchanged as if the probability limit
was taken. This is inaccurate in derivations at
asymptotic level where all terms of order 1/N should
be included (see Table 1).

The finite sample modification of GIC is the Finite
sample Information Criterion (FIC) defined as:

P
FIG(p,@) = In(§%(p)) + @ 3 v(i,.).
i=0

This formula follows for a=2 from FSC(p) by taking the
logarithm and approximating I1n(1+6) by §. The
improvement with respect to GIC is seen when comparing
Fig.4 with Fig.5. FIC has only one minimum. A second
wrong minimum can only occur if a < 1, which never
happens in a sensible order selection criterion. It
should be noted that, although FIC is improved with
respect to GIC, it is by no means a physically based
criterion. That remains a privilege of FSC.
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Fig.5 FIC for LSFB estimates
from 20 AR(2) observations
CONCLUSIONS
In this paper a theoretical framework for model

called a
on the
strict

order selection is proposed.
physical theory, because
explanation of observed data

It might be
the emphasis 1is
rather than on

mathematics. Three levels of approximation to AR
estimation are presented. Thus it is possible to
discriminate between different criteria for order
selection.
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