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RESUME

ABSTRACT

The phenomenon of losses of the effective pseudopower in product modulation and in multirate filtering
has been investigated. The negative influence of this phenomenon on the functional properties of the considered
systems and the problem of recovery of the effective pseudopower in wave digital filters (WDF’s) has been discussed.
Arrangements with additional, periodically time-varying feedback between the modulated signal (representing the
incident wave) and the reflected signal, initially applied for the pseudopower recovery in multirate filtering, have
been adopted also for a product modulation. The arrangements under consideration have been described by means
of the so-called conversion functions. Their analytical expressions have been derived and, on this basis, a method
for the construction of the frequency characteristics has been proposed. The design of the considered arrangements
has been investigated. Suitable strategies for optimization of filter coeflicients have been proposed.

1. Introduction

In many applications of digital signal pro-
cessing, digital filtering is connected with product
modulation or with sampling rate alteration (in-
terpolation or decimation) [1, 2, 3]. It has been
shown [4, 5, 6] that in such processes losses of ef-
fective input signal pseudoenergy occur even for
classical pseudolossless filters [7]. Such losses in-
fluence in a negative way the functional properties
of the system. However, using an additional, peri-
odically time-varying feedback between the mod-
ulated signal (representing the incident wave of
a pseudolossless wave digital filter) and the re-
flected signal, it is possible to recover the pseu-
doenergy which would otherwise be lost in a pro-
cess of sampling rate increase or decrease [4, 5].
In order to achieve acceptable passband atten-
uation of such arrangements called wave digital
filters with recovery of effective pseudopower, op-
timization of their coeflicients is necessary [5].
Among the most important advantages thus ob-
tained are the following: improved filtering prop-
erties, broader stability margin under looped con-
ditions, and greater dynamic range.

This same technique can also be implemen-
ted for a product modulation [8, 9] but the effects
achieved in this case may be not so spectacular
as those for sampling rate alteration. This is not
only because of an unperfect pseudopower recov-
ery, even after a careful optimization, but also
due to the fact that, in the case of product mod-
ulation, the selectivity requirements for the filters
(which are time-varying systems) may occur to be
much stronger than those for the classical time-
invariant filters. These and related aspects of the
pseudopower recovery in a product modulation

and in multirate filtering will be discussed in the
present paper.

2. Product modulation and multirate
filtering

We will consider an arrangement of Fig. 1
which may be a part of a greater signal processing
system. This arrangement contains a premodula-
tion filter H;(e/*T), a product modulator with
the carrier signal ¢(nT), n = 0,%1,%2,..., and
a postmodulation filter Ho(e/“T), where T is the
sampling period. The input signal z(¢1,), t1n =
tio + nT, 1s transformed by the transmittance
H;i(e7“T) into the effective signal z,(nT). Then
z4(nT) is multiplied by ¢(nT') in order to obtain
the modulator output signal z,(nT'). Finally, the

filter Ha(e/“T) reduces the spectrum to the de-
sired bands and in this way produces the output
signal y(t2p), t2n = t20 + nT. About the carrier
signal ¢(nT) we will assume that it is periodic
with period T, = MT where M is an arbitrary
positive integer. Notice that if the signal ¢(nT) is
composed of sequences ...,1,0,0,...,0,... then
the modulation in Fig. 1 may be interpreted as
sampling rate alteration. Thus, the arrangement
in Fig. 1 represents both processes: product mod-
ulation and sampling rate alteration but for inter-
polation we omit the premodulation filter and for
decimation — the postmodulation filter.
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Fig. 1. An arrangement under consideration
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In practice, the most important modulation
scheme is the so-called multiplier-free sinusoidal
modulation for which the carrier signal ¢(nT) is
composed of sinusoidal sequences containing ele-
ments =1 and 0 only [2, 9].

Theorem 1: All possible essentially differ-
ent multiplier-free sinusoidal sequences represent-
ing one period of the sinusoid

g(nT) = V2|Q| cos(2r M 'n + 9) (1)
—r<d9<wT, n=0,£1,£2,...

are those listed in Table 1.

Table 1. Multiplier-free sinusoidal sequences

Sequence M P,=M,/M 2|Q
(1) 1 1 V2
(1,-1) 2 1 V2
51,—1,0) 3 2/3 2/\/3
1,0,—1,0) 4 1/2 1
(1,1,-1,-1) 4 1 V2
(1,1,0,—1,-1,0) 6 2/3 2/V/3

M; — number of elements +1; P, — sequence
pseudopower

Proof

We first make some observations:

1. distances between two elements 0 are equal
and greater than zero,

2. at most two elements +1 or two —1 may be
consecutive to each other and if the first pair
is present then the second also exists,

3. if the element just before a pair of elements
+1 is 0 then the next element is also 0.

Now we will prove that no sequence exists
with length M > 6. Assume that ¢ is a sequence
with M > 6. Assume first that this sequence
contains only elements +1. It must contain a
pair of elements +1, otherwise it would contain
at least two neighbouring sequences (1,-1), i.e.,
more than one period of a sinusoid. From obser-
vation 2 we conclude that ¢ contains also a pair
of elements —1. It is, however, not possible be-
cause it would contain a sequence (1,1,-1, 1),
i.e., again more than one period of a sinusoid.

Thus, ¢ must contain at least one element
0. It is, however, also not possible because it
would contain a sequence (1, —1,0) or a sequence
(1,1,0,—1,-1,0), i.e., in both cases it would con-
tain more than one period of a sinusoid.

Constructing now, on the basis of the above

observations, sequences with lengths 1 < M <6,
we arrive at the sequences listed in Table 1.

q.e.d.

3. Losses and recovery of the effective
pseudopower

Definition 1: Let z(t,) be an arbitrary real
discrete-time signal. The quantities

pu(tn) = $2(tn)> (2)
o= Jim Y palt) 0

V=—00

are said to be the pseudopower at the instant ¢,
and the pseudoenergy of the signal z(¢,), respec-
tively.

Definition 2: A set of freqeuency bands
{P_r,Pi—1,---yP-1,P1,Pa,..., PL}

Pr=lwn,wr), Por=[-wp,-wnl, (4)
1=1,2,...,L,

win =miQo +wi—y and  wip = My +wi (5)

where m1,ma,...,my are arbitrary integers and

0=wy<w; <...<wp =Q,/2 (6)

is called the integer set of bands with respect to
the frequency €2,.

Definition 3: A signal z.(¢) with spectrum
lying in a set of bands {P_,P1i-1,..., P-1,P1,Po,
..., Pr} which is integer with respect to the fre-
quency §2,, and containing no Dirac pulses at the
ends of all bands, is called the integer L-band sig-
nal with respect to the frequency €2,.

On the basis of the above considerations, the
following theorem may be proven:

Theorem 2: If the input signal of the prod-
uct modulator in Fig. 1 corresponds to an integer
L-band signal with respect to the frequency

Q, =21/T,, To=MT (7)

and the M-element multiplier-free modulation se-
quence g contains M; elements £1 then the pseu-
doenergies €, and g4 defined according to (3) for
the signals z,(nT) and z4(nT) at the input and
at the output of the modulator, respectively, are
related by the expression

gq = (My/M)ey = Pyeu. (8)

From this theorem we immediately conclude
that the existence of elements equal to 0 in the
carrier signal ¢(nT) is the cause for losses of the
effective pseudopower. In the same time, how-
ever, these zeros may by exploited for the recov-
ery of the lost pseudopower, namely, by changing
up to 1 the value of the time-varying gain coeffi-
cient v(nT) in the feedback loops shown in Fig.
2 [5], i.e.
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Fig. 2. WDF’s with pseudopower recovery:
a) postmodulation filter,
b) premodulation filter

for ¢(nT) # 0

V(nT) = {’170 for ¢(nT) =0

(9)

-1 <y <1

4. Construction of frequency
characteristics

The premodulation filter and the postmod-
ulation filter in Fig. 1 can be described by the
transmittances H;(e’“T) and Ha(e/“T) only if
they are time-invariant systems. However, since
the filters with pseudopower recovery (Fig. 2)
contain a periodically time-varying feedback loop,
their description is more complicated and may be

based on a set of M functions Ko(e/“7T), K;(e/*T),

oo, Kar—1(e9°T) called conversion functions [2,
4]. Considering, e.g., the postmodulation filter,
we can express the output signal as

M-1
y(tzn) = Y Ym(t2n), (10)

Q/2 ) )
ym(t%‘) = %/9/2 Ym(ewa)ertzn dw, (11)

Ym(ej(w+mﬂ°)T) — Km(ej“’T)Xu(ej“’T),

X, (e7T) = Z T (nT)(e?“T)™™,

n=—oo

(12)
(13)

The frequency w in (12) corresponds to the in-
put signal z,(nT") while the frequencies w + m{2,,
m=20,1,...,M —1, correspond to the respective
comporents Y, (t2,) of the output signal y(t2n
given by (10). Assuming that the signal z,(nT
corresponds to an integer L-band signal with re-
spect to the frequency 2, and defining new, the
so-called band-fitted conversion functions

T (e74T) = K (eF 0 m)T) (14)
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Fig. 3. Construction of the frequency character-
istic
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m=0,1,...,M -1,

Kn(efvT) =

) L
Kp(ed“T) forwe U U[wu +EkQ, wip+kQ)
k=—o0l=1
U[—wm + kQ, —wn + kQ]
0 for other bands

we can fit the frequencies of the conversion func-
tions to the frequencies of the output signal com-
ponents.

Thus, we can write
Ym(eij) — Tm(ejWT)Xu(ej(w—mQ")T),
m=0,1,...,M — 1.

Definition 4: A function

(15)

T(e?T) = Y Trm(eT) (16)

where Ty, (e7“T), m = 0,1,..., M —1, are defined
by (14), is called the resultant conversion func-
tion of the system described by the conversion

functions Ko(e/“T), K1(e?T),..., Kp—1(e?*T).

Notice, that in (16) no real summing takes
place because in a specific frequency only one of
the band-fitted conversion functions can be dif-
ferent from zero.

The resultant conversion function can serve
as a frequency characteristic of the system under
consideration. The attenuation «, the phase S,
and the group dalay 7 can be defined as

Ca=20log|TYe*T)| [dB], (17)
B = arg T(ej“’T) [rad], (18)
=% l, (19)

dw

respectively.

An example of the construction of the fre-
quency characteristic for the modulation sequence
(1,—1,0) and a lowpass postmodulation filter op-
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erating with the rate /' = 24 kHz is shown in Fig,
3. The input signal spectrum has been restricted
to the band w € [4, 8] kHz and its aliases.

5. Design of filters with pseudopower
recovery

First of all, the tolerance scheme for the at-
tenuation of the filter must properly be defined.
We should take into account that the products
of modulation would occur in more bands in the
case if a filter with pseudopower recovery were
used in comparison with those for a classical time-
invariant filter. Thus, the selectivity requirements
for the former may be much stronger.

Second, the filter coefficients must be prop-
erly optimized. Two different optimization strate-
gies are reasonable:

e Strategy 1: minimization of the absolute at-
tenuation (the absolute loss) in the passband

e Strategy 2: optimization with flat loss in the
passband, i.e., merely the passband ripple
minimization.

By the first strategy filters with lower pass-
band sensitivity but also with lower stopband at-
tenuation can be obtained than by the second
strategy.

As an illustration of the design of the con-
sidered arrangements we continue the example in
Fig. 3. We have assumed that the filter should
have a passband edge at 3.402 kHz, a stopband
edge at 4.598 kHz, a passband ripple of at most
0.1 dB, and a stopband attenuation of at least
50 dB. As a reference filter the fifth-degree Cauer
filter C051544 [10] has been chosen. The results
of optimization are shown in Fig. 4.

6. Conclusions

We have shown how the technique of recov-
ery of the effective pseudopower, previously ap-
plied to wave digital multirate arrangements, can
also be adopted for systems with product mod-
ulation. Among advantages thus obtainable are,
above all, improved stability properties in a loo
(formed, e.g., by a telecommunication link) [11].
Increased stopband attenuation for a given filter
structure is certainly also advantageous (e.g., the
minimum stopband attenuation of the optimized
illustrative filter is greater by 12.1 dB for Strat-
egy 1 and by 14.6 dB for Strategy 2 than the stop-
band attenuation of the Cauer filter C051544) but
this advantage may in some applications occur
to be of minor importance because of possibly
stronger selectivity requirements for filters with
pseudopower recovery.
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Fig. 4. Attenuation characteristics: of the Cauer
filter C051544 (...) and of filters with
pseudopower recovery having coefficient
values optimized by Strategy 1 (—) and
by Strategy 2 (- -)
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