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RESUME

Dans cette communication on considére la contribution
pour 1’optimisation du predicteur en systémes. de mo-
dulation par impulsions codées defferentielles MICD.
L*optimisation du predicteur peut produire un change-
ment concernant la densité de probabilité du signal a
1’entrée du quantificateur. Le maximum ga%n par le
report signal & bruit & cause de 1’optimisation du
predicteur en MICD est la function de la densité de
probabilité du signal a 1’entrée du quantificateur
avant et aprés 1’optimisation.

1. INTRODUCTION

Differential pulse code modulation DPCM and its vari-
ants are important techniques for signal coding. The
efficiency of DPCM coders depends upon the prediction
algorithm as well as the structure of the quantizer.
An optimum quantizer is defined to have a minimum en-
tropy for a given average distortion measured between
the sequences of real-valued input values and the
corresponding discrete-valued output values [1].

Given a source and a DPCM system, we will say that
its quantizer is matched to the prediction error if
the quantizer is the Max quantizer (i.e. the minimum
mean-squared-error MMSE quantizer) for the stationary
probability density of the prediction error process

[@].

On the other hand, the analytical result obtained by
R.A. Mc Donald, shows that the linear prediction can
provide a maximum of 10 dB increase in signal-to-

g uantization noise ratio SNR and that 6 dB of this
gain can be obtained with a first order predictor [3].
This result is based on the assumption that a decrease
in mean-square prediction error is directly reflected
as an increase in SNR and that SNR is an appropriate
performance indicator.

In the first part of this paper, we deal with theory
concerning DPCM systems. Maximum possible improvement
due to prediction in DPCM will be analysed in the sec-
ond part. At the end, some numerical rezults which can
be satisfied in practice will be presented.

ABSTRACT

This paper seeks to provide contribution to predictor
optimization in differential pulse code modulation
DPCM systems. The predictor optimization may produce

a change in the signal: probability density function
which is the quantizer input. The maximum improvement
in signal~to-noise ratio due to predictor optimiza-
tion in DPCM depends on the prediction error probabil-
ity density function before and after optimization

2, THEORY

The DPCM transmitter and receiver are shown in Fig-
ures 1 and 2, respectively. The quantizer input in
Figure 1 is given by
elk) = s(k) - &(k/k=1) ..... ceees (1)
where 3(k/k-1) is the predicted value at time k, while
Ny
§(k/k=1) = ) a; (kL) verurvrens (2)
=1
The ai(isz, 2, «.., N)are predictor coefficients, and
8(k) = 8(k/k=1) + eq(k) (3)
Here, eq(k) is a quantized version of e(k) and can be
expressed in the form
eq(k) = e(k) + nq(k) N 7

where nq(k) denotes quantization noise which may be
highly correlated with e(k) and s(k). From equations
(3) and (4) and using equation (1), we obtain

8(k) = s(k) + nq(k) ceeseseennens (5)

The sequence (8(k)) is the feedback signal in the
transmitter and in the absence of channel errors,
(8(k)) is the receiver output and the feedback signal
in the receiver.

The most widely used indicator of DPCM system perform-
ance is the signal~to-noise ratio

- ]
s (k) g (k)
SNR = = veeeses {6)
s (k)-8(kj] (k)
q

where "—" denotes a time averaging operation. In
order to investigate predictor performance, SNR can be
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Figure 1. DPCH system transaitter
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Figure 2. DPCN systen recafver

express in the form

s2(k)  e*(x)  spem
SNH: . =

&2 (k) nate) @

where SPER is the signal-~to-prediction error ratio,

i.e.

s2 (k) s2 (k)
SFPER = T r—— e —— .. (8)
e*k) (s(k) - §(k/k-1))%

Q(NJ) is the normalized quantizing noise power at the
output of ¥-level quantizer

When it is assumed that the quantization is fine so
that the quantization noise in §(k) can be ignored,
then 5/k) = s(k) and equation (2) becomes

N
s(k/k=1) = ] a;s(k=i) .ouiuni. (10)
i=1

where the """ has been removed to indicate that (s(k))
rather than (5(k)) appears on the right side of equa-
tion (10).

Another form for equation (7) is used in DPCM system
analysis. Namely, using equation (10) and defining

e(k) = s(k) ~ s(k/k=1) vevvven... (11)

equation (7) gives

82 (k) e2(k)  SNRT
SNR = . =

2 (k) né(k) w)

where

s% (k)
SNRl = ————

e (k)
represents the SNR improvement and Q(¥) is previously
defined, only this time the quantizer input is e(k).

3. MAXIMUM POSSIBLE IMPROVEMENT DUE TO PREDICTION

The main result of the present paper originates from
the following theorem.

Theorem: The signal-to-noise ratio improvement in DPCM
system SNRI > SPER, where SPER represents the signal-
to-prediction error ratio. The only assumption re-
quired to establish

SNRI 2 SPER ...ivevevoennens (14)

is that the predictors are optimal in the minimum mean
squared error MMSE sense,

Proof: We have to demonstrate that the SNRI from equa-
tion (13) is greater than or equal to the SPER in
equation (8). Since the numerators in equations (8)
and (13) are identical, it sufficies to show that the
denominator of equation (13) is less than or equal to
the denominator of equation (8). Replacing the time
averaging operation with the ensemble expectation, we
have to show tackinyinto account equation (11) that

B ((s(k) - s(k/k=1))%) < E ((s(k) - §(k/k-1))°)  (15)

where it is assumed

s(k/k=1) = E (s(k) / S(k=1)) evevevnnss (16)
as well as
8(k/k=1) = E (s(k) / 8(k=1)) vvvvennnn. (17)

with S(k~1) = (s(5), = 1, 2, ..., k-1) and §(k-1) =
= (8(5), j=1, 2, ..., k=1) assuming that the predict-
ors are chosen to be optimal in the MMSE sense.

Left side of the equation (15) gives

E ((s(k) — E (s(k) / S(k—l))z) = E ((s(k) - E (s(k) /

/8010, p(k=10))2) iiiieiiinienn. eerenen (18)
-1) = i =1, 2, o..4 k-1

where p(k-1) = (n (§), j=1, 2, k=1)

Equation (18) holds since regardless of the properties

of the quantization noise, »(k-1) cannot provide more
information about s(k) than S(k-1).

Tacking into account that

S(k=1) = 8(k=1) +(k=1) = (s(j) + n (]),
J=1, 2, ..., k=1)

and noting that §(k~1) is a transformation of the sets
S(k-1) andp(k-1) and hence cannot provide more infor-
mation about s(k) then S(k-1) and p(k-1) individually,
it follows that



E ((s(k) - E(s(k) / S(k=1))%) =
= B ((s(k) - E(s(k) / 5(k=1), p(k=1)))%) <
S E ((s(k) - E(s(k) / S(k=1) +g(k-1)))%) =
= E ((s(k) - E(s(k) / B(k=1)))°) veur... e <(19)

which establishes equation (15). Thus, from equations
(8), (13) and (15}, we obtain the result that

SNRI » SPER

Hence, SNRI represents the maximum possible improve-
ment due to prediction in DPCM.
This completes the proof.

4. NUMERICAL RESULTS

The performance of a suboptimum predictor and an opti-
mum predictor are to be compared based on équations
(12) and (13). Assume that the suboptimum predictor
achieves an SNRI denoted by SNRI, and that the corre-
sponding error sequence given by equation (11) has a
Gaussian distribution., If the quantizer is four-level,
MMSE quantizer from Max [4] then Q(¥) in equation (12)
is Q(4) = 0,1175. Then the SNR of this DPCM system
from (12) 1is

SNRT ,
I

SNRJ =

= 8,51 SNRI
0,1175

S uppose now that the predictor is chosen to maximize

the SNRI and that the maximum SNRI achieved by this

optimum predictor is SNRI’ where by assumption

SNRI® > SIVRIZ

Under the same assumptions that led to equation (20),
the estimated value of the SNR for this DPCM system
with the optimized predictor is

SNR, = 8,51 SNRI’

Since SNRI” » SNRIy, it will be SNR, > SNRy.

Assume now that the sequence (e(k)) is gamma distri-
buted. For a gamma distribution, Q(¥) with ¥=¢, is
Q(4) = 0,2326 [5]. Therefore the SNR of the system
with the optimized predictor and gamma-distributed
quantizer is according to equation (12)

SNRI®
SNR® =

= 4,30 SNRI®

.........

0,2326

Comparing equations (21) and (22), it is evident that
the SNR of the system after optimization is about 3 dB
less than what would be predicted if the change in pdf
of e(k) were ignored, i.e

SNR® 4, 30

—_— = = 0,506
SIVR2 8,61

or

SNR?

10 Zoglo = -2,97 dB

SNR 2

If the SNR of the original nonoptimized system given
by equation (20) is compared to the SNR of the opti-
mized system in, equation (22), in order to have

SNR> > SNR1, it is necessary that SNRI® » 1,98 SNRI1.
That is, in order for the optimized system to have a
grater SNR than the nonoptimized system, SNRI®> must
exceed SNRI by about 3 dB. Of course, this is only
true under the assumption of the example concerning
four-level quantizer, as well as the fact that the
MMSE Gaussian quantizer is replaced with a MMSE quan-
tizer optimized for a gamma-distributed input.. It
seems likely that these assumptions can be satisfied
in practice.

5. CONCLUSION

The DPCM predictor optimization may cause. a change in
the prediction error probability density function
that is ignored by standard analyses. Optimizing the
DPCM predictor in the MMSE sense can produce a change
in the SNR that is much greater than or much less
than the increase obtained in the SNR improvement or
the SPER. Finally, the minimum improvement in the SNR
due to predictor optimization in DPCM depends not
only of the source correlation properties but also on
the prediction error probability density function be-
fore and after optimization.
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