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A FAMILY OF LOW-SENSITIVE NONRECURSIVE FILTERS
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RESUME

Une famille de FIR filtres a

sensibilité restreinte. On propose une

structure nouvelle de filtres & reéponse

impulsionnelle finie. Plusieurs exenmples

montrent que cette structure est vraiment i

sensibilité restreinte.

1. INTRODUCTION

The effects of finite wordlength are

important also in the case of nonrecursive

filters, although usually they are there not

so crucial as for recursive filters. This

paper deals with reduction of coefficient

quantisation effects which are usually

sensitivities of the
with

measured
filter

using the
frequency characteristics
variations.

exhibit

respect to the coefficient

Considered are FIR structures which
charac-

low sensitivity of their amplitude

teristics. Because of the correlation be-

tween the effects of coefficient and data

quantisation, these structures are also

expected to exhibit low output noise [1].
Some authors [2-4] have already proposed

to reduce the effects of finite

in FIR

wordlength

filters wusing - the concept of

passivity. A generalization [5] of such an

approach has been employed by derivation of
the structure described in {[2]. Here, it 1is

shown that a large family of filter

structures can be derived from the basic

structure described in [2]. Among the

numerous structure versions, for a given

transfer function, the optimal in the
meaning of a certain sensitivity criterion
can be found.
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ABSTRACT
Described is there a family of nonrecursive
structures. For a given transfer function,

one can choose the structure exhibiting the

most advantageous sensitivity properties.

The results have been proved by

examing numerous filters.

2. THE STRUCTURE FAMILY

Consider a transfer function of a FIR

filter N
H(z) = ) himz ™, (1)
n=0
which can be rearranged as
N
H(z) = c- ) G (2) , (2).
n=0
G (z)==-h(n)z ™, c=h(0)+h(1)+...+h(n).

Thus we have a chain (Gn}. Let {Pn} is an

arbitrary permutation of {Gnl. There is

P, =k f5(z) , (3)
where ki is a real coefficient being equal
to one of the samples of the
impulse response h(-),
f.(z) = z—n, where n 1is a certain

i
nonnegative integer dependent on i.

Of course

N
H(z) = c- z P (2) . (4)
i=0

The transfer function Pi(z) can be

implemented in the structure shown in Fig.1l.
[2]), where d1=k0/(ko+...+kN),
d2=k1/(k1+...+kN),

: (5)

Ao =kyoq/ ey Ry o

In order to minimize the

N-1*
number of delays
the structure can be rearranged (Fig.2).
The good sensitivity properties of the
[2] as

modifications are related to the

basic structure well as of ité
existence
of a such characteristic frequency for which
the overall transfer function is independent
values of the

from the numerical

ANnr
r4vie}



206

Fig.1l. The basic structure
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Fig.2. The modified structure

coefficients di' The characteristic
frequency can be 0 or 0.5 (when the unit
sampling freguency is assumed). Thus the

appropriate to
In the

structure described is

implement low- and high-pass filters.
combinations of

two-dimensional case the

low- and high-passes are also realizable

with a given characteristic frequency in a

passband. Existence of a characteristic
frequency. where the transfer function
sensitivity (not obviously the magnitude

sensitivity!) is equal zero, 1s related to
reduced sensitivity in the passband.

As the number of possible permutations of

{Gn) is considerable, there exists a
considerable number of the structure
modifications. One among them minimizes a

given sensitivity performance index.

In the obtained structure, the numbers of
multipliers and delays are canonical. The
sensitivity reduction is obtained on the
cost of the increased number of additions,

similarly as it is often in low-sensitive

structures [4-7].

3. PASSIVE STRUCTURES

The concept of passivity has been already

used to great advantage in the theory of

digital filters [6]. The classical approach

is related to the signal power defined as

7-x2(n), where y 1is a positive weighting

constant and x(n) is a signal sample.

Nevertheless, other measures also can be

used in order. to define the signal
offered by

the concept of €1~power defined by 7y -|x(n)]|.

power

[6,7]. A promising extension is

The structure from the Fig.1 is
€1~passive when the condition

0 < di <1 (6)

is imposed [7]. In order ¢to

preserve this

condition, the above design procedure should

be modified by making an observation that

Pi = Iki|-51gn ki-fi(z), (7)
where sign(-)=-1, 0, or -1 for negative,
zero, or positive arguments, respectively.
Now, let c¢=|h{(0)|+|h(1)|+...+|h(n)]. (8)
Then d0=ik0i/(ik0i+...+ikNi),

dy=lky 17Uk I+ee + kD)
: (9)

N-17
fulfill the condition of @1—passivity.

dy_q=lky_q 1/ Uky_y [+ DD

N-1
Now,
the transfer functions of the branches are

sign ki-fi(z). (10)

In this case, the property of

€1—passivity is preserved not only for a

particular set of the coefficient values di

but also for those wvalues from the whole

interval (0,1). Such a property called as

structural passivity is , in general,

related to low magnitude sensitivity [8] for

various Kkinds of filters {(low-, high-, and
band-pass).

The ﬁl—passive nonrecursive structures
are applicable as building blocks of
inherently stable 1-D and 2-D recursive
systems [7].

4. EXPERIMENTAL RESULTS

The two permutations which appear in the

most natural fashion have been chosen. The

first (denoted as A) <corresponds to the
choice fi(z)=z_i+z_(N_i), (11a)
while the second (B) to
fi(z)=z-([N/2]—i)+z—([N/2]+1+i)_ (11b)
Considered are also the passive versions
(denoted as PA and PB, respectively).
Examined are linear-phase low-pass
filters with 14, 20, and 32 taps. The
sensitivities for the respective high-pass

filters are the same. The sampling frequency
is assumed to be unit. The edges
are fixed to 0.05, 0.15, and
transition band widths to 0.025,
have 27

designed

passband
0.25, the
0.05, and
0.1. Thus in common we different

equiripple filters using the



algorithm of McClellan-Parks [9].

Then, examined are also minimum-phase
equiripple filters with the parameters as
above but only with 14 and 20 taps, i.e.,
18 filters. The filters have been designed
using the program Mintom [10].

The frequency-dependent sensitivity
measures are considered as follows

D = ‘“:? {alm/aai} .

p = average {am;/aa.} ,
a a. 1

1

q = m:’: {[a}m/aai]-ai/lm} ,

a, = a"eZige {[amuaai]-aium} .
where ai=di or h(n), respectivelyz

For the fixed-point arithmetic, the
functions Dm and Da are measures of the
effects of coefficient quantisation. Da has
the meaning of the worst-case multiparameter
sensitivity. The functions dm and da are of
minor importance as they describe the
coefficient quantisation effects by the
floating-point arithmetic and a substantial
dynamic range of the coefficient values.

In order to prove the good properties of
the obtained structures, the average values
of Da in the passband (Daap)' in the
stopband (Daas)’ and in both these bands
(Daa) are calculated as the average from 27
linear~phase filters and 18 minimum-phase
filters for 4 versions and the classical
transversal structure (T) (cf. Table 1).
Table 1 as well as the graphs of sensitivity
for two sample filters (Fig. 3 and 4) shows
that in most cases the proposed structures

are less sensitive.

Table 1
D D D
aap aas aa
Linear T 1.3154 1.2766 1.2776
phase A 0.7699 0.7056 0.7666
B 0.2743 0.4793 0.4138
PA 0.5971 0.6000 0.6103
PB 0.2108 0.2448 0.2451
Minimum T 0.7049 0.6370 0.6530
phase A 0.2417 0.3362 0.3197
B 0.6427 0.6099 0.6517
PA 0.1896 0.2930 0.2719
PB 0.4511 0.5115 0.5023

Nevertheless, the less sensitive struc-
ture among the four considered wversions is
significantly better as the transversal one.
It is shown for the averages of Dm in the
passband, in the stopband, and in both of
them (Dmap’ Dmas’ Dma)’ for the maximums of

D_ in the two bands (D , D ), for D .
a amp ams aap
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Fig.3. Magnitude sensitivities of the equi-
ripple linear-phase filter (14 taps,
passband edge: 0.05, transition band
width: 0.1)
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Fig.4. Magnitude sensitivities of the equi-
ripple minimum-phase filter (20 taps,
passband edge: 0.05, transition band
width: 0.05).

D , D as well as for the averages of 4

aas aa m

and d (d__, d_.) in the passband. In
a ma aa

columns N (cf. Table 2) the most

advantageous values are presented for

comparison to those for the transversal

structure (T).

Table 2

Linear phase Minimum phase

T N T N
Dmap 1.9520 0.5453 0.9966 0.6166
Dmas 1.9098 0.7662 0.9756 0.9365
D s 1.8279 0.7616 0.9835 0.8585
Damp 1.9961 0.2826 1.0000 0.2915
Dams 1.6007 0.3012 0.8731 0.4049
Daap 1.3154 0.1684 0.7049 0.1808
Daas 1.2766 0.2448 0.6370 0.2862
Daa 1.2776 0.2440 0.6530 0.2667
dma 0.2491 0.1088 0.3063 0.1053
daa 0.0770 0.0337 0.0850 0.0257

The above results prove that the proposed
family of structures offers large

possibilities of sensitivity reduction.
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