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Abstract

Pseudo Quadrature Mirror filter banks are well known
in digital signal processing. As the filters have conve-
nient characteristics (in the sense of stopband attenuation
and transition band) and quasi-perfect reconstruction is
reached, they are very useful in a great number of appli-
cations e.g. audio coding. So, there is a need to have an
efficient realization of this kind of filter banks. Here is
described a realization using the Fast Hartley Transform:
this fact results in a drastical reduction of the number
of operations so that it is possible to implement in many
commercial DSP very large filter banks.

"1 Introduction

A class filter banks that allows quasi-perfect reconstruc-
tion has been proposed in [1] and [2]. In this paper an
efficient implementation for Pseudo Quadrature Mirror
Filter Banks that guarantees a completely flat overall re-
sponse is proposed.

The solution was found fundamental in order to reduce
computational effort associated to high quality coding of
music according to MASCAM systems, the application
which motivated the present work. The analysis bank
computations are performed each K time interval, and
can be viewed as a linear mapping from a vector with
N components (the shift register of the input signal) to
a vector with K components (the samples of each of K
sub-bands).

Dually, each K time intervals, synthesis bank compu-
tations are performed, and consist of another linear map-
ping from a vector with N components (the last N/K
transmitted block samples) to a vector with K compo-
nents (K successive samples of the reconstructed signal).
So we have two different K x N fixed matrices. The com-
putational complexity reduction is obtained with an op-
portune factorization of these matrices.

As in classical complex filter banks involving FFT, here
the operations are splitted in a filtering part and in a
modulation part. Modulation is carried applying a real
symmetrical and orthogonel matrix to a K components

vector. The corresponding matrix product can be exe-
cuted using a fast algorithm.

2 Polyphase Representation

Consider a filterbank with K equally spaced channels and
critical sampling. The impulse responses of the filters
in the analysis stage and in the synthesis stage are, re-
spectively, hx(n) and gi(n), for k = 0,..., K — 1 and
n=0,...,N —1 (we suppose N to be-an integer multi-
ple of K). Using the poliphase representation [4], the K
outputs of the analysis stage are given by:
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The reconstructed signal is given by:
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Eqgs. (1) and (2) show that, every K input/output time
steps, both the analysis and the synthesis filter bank per-
form N/K products between a K * K matrix and a vector.
This gives a computational complexity of N multiplica-
tions and additions per time step.

3 Factorizations

In (1], [2] and [3] the filters that guarantees aliasing can-
cellation and flat overall response are specified. Let h(n)
represent the prototype linear phase impulse response of
a K band analysis filter bank. The passband filters are
given by:

hi(n) = h(n)mx(n) (3)
where:
() = sin (2k+1)(zz{+ I_N)x+ek (4)
We choose (see [3):
o, 2F 4+ 1 5)

Substituting (5) into (4) we obtain:

(2k+1)(2n+1- N+ K)
1K = (8)
The synthesis bank passband filters are just time re-
versed versions of the analysis bank filters. Remembering
that h(n) has linear phase the impulse responses are:

mg(n) = sin

a(n) = Au(N-1-7)
= h(n)rx(n) (7)
where:
re(n) = mu(N—1-n)
_ sin(2Ic+1)(2n+1—-N+3K)7|r (8)

4K

Two factorizations can be used in order to separate the
prototype impulse response from matrices H; and G,

H, = AD, (9)
G, = DB, (10)
where:
D, = diag[h(gK),...,h(¢K + K — 1)]
mo(gK) mo(¢K + K ~ 1)
Aq = - .

mg-1{¢K) myg_1{gK + K — 1)

ro{¢K) ric-1(¢K)
B, - | : .

ro(¢gK + K — 1) re-1(¢gK + K - 1)

Consider the function:

s () Esing—k—_{-—]}%—iﬂw (11)

Disregarding the sign, it.takes on K different values.
Moreover, my(n) and rg(n) are shifted versions of sg(n)
(supposing N + K to be even). In fermulas:

me(n) = sg(n—

re(n) = sk(n-—

This means that, disregarding the sign, all columns of
matrices Ay are also columns of the matrix S (symmet-
rical and orthogonal), defined as:

30(0) So(K—' 1)
S=: e (14)
8}(...1(0) SK._l(K—' 1)

Similarly, disregarding the sign, all rows of matrices B,
are also rows of the matrix S.

A useful consequence of this facts is that all the columns
of the matrix S™'A, have all the components equal to
zero except for one that can be 1 or —1. The same prop-
erty is satisfied by all rows of the matrix B,S~1. It fol-
lows that S™'H_ has only a non-zero component per col-
umn, and that G,S~! has only a non-zero component per
row. These proprierties suggest a more efficient operating
mode of filterbanks instead of (1) and (2):
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In (1), when the matrix H, operates on a vector, it takes
K? multiplications. On the contrary, in (15) we have
the matrix S™1H, that needs only K multiplications to
operate on a vector.

The same consideration can be repeated for G4 and
G,S~L
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Figure 1: a) direct implementation, b) polyphase imple-
mentation, ¢) fast polyphase implementation

The computational complexity of both stages slows
down from N multiplications per input samples to N/ K +
K. This number takes into account that every K time
steps a product is performed between the matrix S and a
vector (K2 multiplications). The computational complex-
ity can be further reduced resorting to a fast algorithm
to perform this product.

In the derivation we were supposing K + N to be even,
otherwise ri(n) and my(n) are no more shifted versions
of si(n), as defined in (11). If however K + N is odd, a
similar factorization is possible. In this case, the function
(11) could be substituted by:

(2k+ 1)(n+ 1)
2K

sk(n) =sin

4 Fast S-Transform

The product u = Sv can be convenientely simplified using
a proper factorization of the matrix S. We have:
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wy = vz
K
WK _1-i = V{41 t=0—2——1 (18)
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Now consider the following sequence, for1 =0... K—1

_ Y4 . 1w

Z; = w; cos X + W —;sin X

The summations in (19) are respectively the imaginary

(with the sign changed) and the real part of the DFT of

the sequence (20).

Alternatively, the Discrete Hartley Transform ! of the

sequence 2, named Z, can be employed to compute the
summations in (19). After some algebra we obtain:

(20)

_ L 2k+1 2k+1 4%
up = (sm K TS Tk w) 2 (21)
sin2k+11r—cos 2k+17r Zi-1-k
4K 4K 2

In order to resume, the computation of the product
u = Sv can be efficiently decomposed into four steps:
o Perform the permutation defined in (18).
o Apply the rotation given by (20), (2K multiplications).
e Perform Fast Hartley Transform of the sequence (20)
(Klog,K multiplications if K is a power of two).
e Apply the rotation described in (21) (2K multiplica-
tions).

As an example of applications we consider a filter bank
that can be used in MASCAM coding of sound signal. A
reasonable choice for the number of sub-bands and the
prototype filter length can be KX = 64 and N = 512.
In this case both analysis and synthesis filter bank need
to execute only 18 multiplications per input/output time
step.

1The Discrete Hartley Transform of a sequence z; is defined as
K-1
ik ik
X = E z.-(cosh}: +sin2; ) k=0...K~-1

1=0
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5 Conclusion

In the poliphase realization proposed both analysis and
synthesis filter banks computations are decomposed into
K inner products of length N/K and a product of a vec-
tor by an orthogonal symmetrical matrix. If K is a power
of two the total number of multiplications involved per in-
put sample is N/K + 4 + log, K. Otherwise this number
increase sligthly and a prime factor algorithm implement-
ing FHT is needed [6].

The effective additions are only those used to perform
FHT (about 2 K log; K ), because the inner products can
be efficiently computed with MAC instruction (Multiply
and Accumulate), available in many commercial DSP.

Addressing is very simple and allows very compact
source code. All computation can be done in place, with
no additional memory storage.
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